
z/OS

TSO/E
Programming Guide

SA22-7788-01

���

z/OS

TSO/E
Programming Guide

SA22-7788-01

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 159.

Second Edition, September 2002

This edition applies to Version 1 Release 4 of z/OS (5694–A01), and Version 1 Release 4 of z/OS.e (5655–G52),
and to all subsequent releases and modifications until otherwise indicated in new editions.

This is a major revision of SA22–7788–00.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

Tables . ix

About this document . xi
Who should use this document xi
How this document is organized xi
How to use this document . xi
Where to find more information xi

Summary of changes . xv

Part 1. Introduction . 1

Chapter 1. Programming Using TSO/E 3
What is a REXX Exec? . 3
What is a CLIST? . 4
What is a Command Processor? 5
Considerations for Writing REXX Execs, CLISTs and Command Processors . . . 5
Storing REXX Execs in VLF Storage 6
What is an APPC/MVS Transaction Program? 8
What is a Server? . 9
Overview of TSO/E Programming Services 9
Syntax Notational Conventions 10

Part 2. Writing a Command Processor . 13

Chapter 2. What is a Command Processor? 15
The TSO/E Environment . 15
Accessing the User Profile Table Without a CPPL 17
Command Syntax . 18
What is a Subcommand Processor? 18

Chapter 3. Writing a Command Processor 20

Chapter 4. Validating Command Operands 21
Using the Parse Service Routine 21
A Sample Command Processor 24

Chapter 5. Communicating with the Terminal User 35
Issuing Messages . 35
Performing Terminal I/O. 37
Changing Your Command Processor’s Source of Input 38
Writing a Full-Screen Command Processor 38

Chapter 6. Passing Control to Subcommand Processors 49
Step 1. Issuing a Mode Message and Retrieving an Input Line 49
Step 2. Validating the Subcommand Name 50
Step 3. Passing Control to the Subcommand Processor 50
Step 4. Releasing the Subcommand Processor 51

Chapter 7. Processing Abnormal Terminations 53

© Copyright IBM Corp. 1988, 2002 iii

Error Handling Routines . 53
When are Error Handling Routines Needed? 53
Guidelines for Writing ESTAE and ESTAI Exit Routines 54

Chapter 8. Processing Attention Interruptions 57
Responding to Attention Interruptions. 57
How Attention Interruptions are Processed. 57
Writing Attention Handling Routines 60

Chapter 9. Creating HELP Information 65
Writing HELP Members . 66
An Example of a HELP Member 69

Chapter 10. Installing a Command Processor 71
Using a Private Step Library . 71
Placing Your Command Processor in SYS1.CMDLIB 71
Creating Your Own Command Library 71

Chapter 11. Executing and Testing a Command Processor 73
Executing a Command Processor 73
Testing an Unauthorized Command Processor 73
Testing an Authorized Command Processor 74

Part 3. Preparing, Executing and Testing a Program 75

Chapter 12. Overview of Preparing, Executing and Testing a Program . . . 77

Chapter 13. Compiling and Assembling Programs 81
ASM Command . 81
COBOL Command . 82
FORT Command . 82
PLI Command . 82
RUN Command . 82

Chapter 14. Binding or Link-Editing a Program 85
LINK Command . 85

Chapter 15. Loading and Executing a Program 91
LOADGO Command . 91
CALL Command . 94

Chapter 16. Testing a Program 97
The TEST and TESTAUTH Commands 98
When to Use the TEST and TESTAUTH Commands 99
Examples of Issuing the TEST and TESTAUTH Commands 101
TEST and TESTAUTH Subcommands 103
Addressing Conventions Associated with TEST and TESTAUTH 105
Restrictions on the Use of Symbols 110
Programming Considerations for Using TEST and TESTAUTH 112

Chapter 17. A Tutorial Using the TEST Command 117
How to Use This Tutorial . 118
Preparing to Use TEST . 119
Viewing a Program in Storage 121
Monitoring and Controlling Program Execution 129
Altering Storage and Registers 133

iv z/OS V1R4.0 TSO/E Programming Guide

Using Additional Features of TEST 136
More TEST Subcommands . 143
Testing Programs That Use the Vector Facility 144
Testing Programs That Use Extended Addressing. 145
Example Programs for the TEST Tutorial 147

Part 4. Appendixes . 155

Appendix. Accessibility. 157
Using assistive technologies 157
Keyboard navigation of the user interface. 157

Notices . 159
Programming Interface Information 161
Trademarks. 161

Bibliography . 163
TSO/E Publications . 163
Related Publications . 163

Index . 165

Contents v

vi z/OS V1R4.0 TSO/E Programming Guide

Figures

1. Interface between the TMP and a Command Processor 16
2. Format of the Command Buffer . 17
3. Chaining of Control Blocks and Fields to the UPT. 17
4. A Command Processor Using the Parse Service Routine 22
5. A Sample Command Processor . 25
6. Function of RESHOW in Full-Screen Message Processing 43
7. Function of INITIAL=YES when First Message is Full-Screen 44
8. Function of INITIAL=YES when First Message is Non-Full-Screen, Example 1 45
9. Function of INITIAL=YES when First Message is Non-Full-Screen, Example 2 46

10. Function of INITIAL=NO . 47
11. Format of the Input Buffer . 49
12. ABEND, ESTAI, ESTAE Relationship . 54
13. Parameters Passed to the Attention Exit Routine 62
14. Syntax of the SAMPLE Command . 69
15. Syntax of the EXAMPLE Subcommand . 69
16. Example of a HELP Member for the SAMPLE Command and EXAMPLE Subcommand. 70
17. Compiling and Link-Editing a Single Program . 78
18. Terminal Session Showing Execution of a Single Program 79
19. Source for First Sample Program . 148
20. Listing for First Sample Program . 149
21. Source for Second Sample Program . 150
22. Listing for Second Sample Program . 151

© Copyright IBM Corp. 1988, 2002 vii

viii z/OS V1R4.0 TSO/E Programming Guide

Tables

1. Determining When an Exec is Compressed . 8
2. Summary of TSO/E Services . 9
3. The Command Processor Parameter List (CPPL) 16
4. Mapping Macros for Control Blocks that Chain to the UPT 18
5. Macros Used to Write a Full-Screen Command Processor 39
6. The Attention Exit Parameter List . 63
7. The Terminal Attention Interrupt Element . 63
8. Categories of Information in HELP Members . 66
9. Format of a HELP Data Set Member . 67

10. Commands Used to Prepare, Execute and Test a Program 77
11. Source/Program Product Relationship . 82
12. The TEST and TESTAUTH Subcommands . 103
13. Address Forms Supported by TEST . 118

© Copyright IBM Corp. 1988, 2002 ix

x z/OS V1R4.0 TSO/E Programming Guide

About this document

This document supports z/OS (5694–A01) and z/OS.e (5655–G52).

This document describes how to write and install a command processor on page
13, and how to provide HELP information for a command on page 65. It also
describes how to compile, assemble, link-edit, execute, and test a program in the
TSO/E environment on page 75.

Who should use this document
This document is for the following audience:

v Application programmers who design and write programs that run under TSO/E.

v System programmers who modify TSO/E to suit the needs of their installation.

The reader should be familiar with MVS programming conventions and the
assembler language, and should know how to use TSO/E.

How this document is organized
This document is divided into three parts:

v Part 1, “Introduction” provides an overview of the types of programs that run
under TSO/E and the services TSO/E offers.

v Part 2, “Writing a Command Processor” on page 13 describes how to write and
install a command processor, and how to provide HELP information for a
command. It discusses the TSO/E services that you can use in a command
processor, and refers you to z/OS TSO/E Programming Services for more
information, when needed.

v Part 3, “Preparing, Executing and Testing a Program” on page 75 describes how
to use TSO/E to compile, assemble, bind or link-edit and execute a program. It
also explains how to use the TSO/E TEST and TESTAUTH commands to test a
program.

How to use this document
If you have never used this document, read Chapter 1, “Programming Using TSO/E”
on page 3 to become familiar with the types of programs that you can write to run
in the TSO/E environment.

If you are writing a command processor, read Part 2, “Writing a Command
Processor” on page 13 of this document, and see z/OS TSO/E Programming
Services for information on the TSO/E services that you can use in your command
processor.

If you have written your program, read Part 3, “Preparing, Executing and Testing a
Program” on page 75 of this document for information on how to compile, assemble,
link-edit, execute and test your program.

Where to find more information
Please see z/OS Information Roadmap for an overview of the documentation
associated with z/OS, including the documentation available for z/OS TSO/E.

© Copyright IBM Corp. 1988, 2002 xi

|

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

Using LookAt to Look Up Message Explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS Collection, SK3T-4269 .

xii z/OS V1R4.0 TSO/E Programming Guide

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:
lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

About this document xiii

xiv z/OS V1R4.0 TSO/E Programming Guide

Summary of changes

Summary of changes
for SA22-7788-01
z/OS Version 1 Release 4

This document contains information previously presented in z/OS TSO/E
Programming Guide, SA22-7788-00, which supports z/OS Version 1 Release 1.

Changed information

Information is added to indicate this document supports z/OS.e

Update missing bullet in Chapter 8“How Attention Interuptions are Processed”.

This document contains terminology, maintenance, and editorial changes including
changes to improve consistency and retrivability.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

© Copyright IBM Corp. 1988, 2002 xv

xvi z/OS V1R4.0 TSO/E Programming Guide

Part 1. Introduction

You can use TSO/E to help you write, execute and test programs. Also, you can
write programs to run in the TSO/E environment and use the services provided by
TSO/E. The following topics provide an overview of the types of programs that run
under TSO/E and the services TSO/E offers.

© Copyright IBM Corp. 1988, 2002 1

2 z/OS V1R4.0 TSO/E Programming Guide

Chapter 1. Programming Using TSO/E

What is a REXX Exec? . 3
What is a CLIST? . 4
What is a Command Processor? 5
Considerations for Writing REXX Execs, CLISTs and Command Processors . . . 5
Storing REXX Execs in VLF Storage 6

Controlling REXX Exec Compression 7
What is an APPC/MVS Transaction Program? 8
What is a Server? . 9
Overview of TSO/E Programming Services 9
Syntax Notational Conventions 10

There are several types of programs that run under TSO/E: CLISTs, REXX execs,
command processors and servers. Although these types of programs are introduced
in the following topics, this document gives detailed information on command
processors only. For information on writing REXX execs, see z/OS TSO/E REXX
User’s Guide and z/OS TSO/E REXX Reference. For a complete discussion of
CLISTs, see z/OS TSO/E CLISTs. For more information on writing servers, see
z/OS TSO/E Guide to SRPI.

What is a REXX Exec?
The REstructured eXtended eXecutor (REXX) language is a high-level interpretive
language that enables you to write programs in a clear and structured way. You can
use the REXX language to write programs, called execs, that perform a given task,
or tasks, or group of tasks.

REXX execs have many characteristics that are similar to CLISTs. For example,
using either the REXX or CLIST language, you can:

v Perform numerous tasks, including issuing multiple TSO/E commands and
invoking programs written in other languages.

v Write structured programs, perform I/O and process arithmetic and character
data.

v Write interactive applications by issuing commands of the Interactive System
Productivity Facility (ISPF) to display full-screen panels.

v Provide easy-to-use interfaces to applications written in other languages. Execs
can prompt the terminal user for information on the tasks the user requests, set
up the environment needed for the application, and then issue the commands
needed to invoke the application program.

However, a significant difference between REXX execs and CLISTs is that you can
execute CLISTs only in a TSO/E environment. REXX execs do not require a TSO/E
environment, and can execute in any MVS address space.

TSO/E REXX is the implementation of the Systems Application Architecture (SAA)
Procedures Language on the MVS system. By using the instructions and functions
defined for the SAA Procedures Language, you can write REXX execs that will run
in any of the supported SAA environments, such as VM/SP (CMS). SAA Common
Programming Interface Procedures Language Level 2 Reference describes the
instructions and functions the SAA Procedures Language offers.

© Copyright IBM Corp. 1988, 2002 3

You can also write APPC/MVS transaction programs in the REXX language. The
host command environments, CPICOMM, LU62, and APPCMVS, allow you to
invoke the SAA common programming interface (CPI) Communications calls and
APPC/MVS calls, which are based on the SNA LU 6.2 architecture, respectively.
The CPICOMM host command environment allows transaction programs written in
the REXX language to be ported across Systems Application Architecture (SAA)
environments. The LU62 host command environment allows you to use specific
features of MVS in conversations with transaction programs on other systems.

Note: APPC/MVS calls that are based on the SNA LU 6.2 architecture are referred
to as APPC/MVS calls throughout the document.

For information about writing APPC/MVS transaction programs, see z/OS MVS
Programming: Writing Transaction Programs for APPC/MVS. For information about
writing and executing REXX execs, see z/OS TSO/E REXX User’s Guide and z/OS
TSO/E REXX Reference.

Another advantage to using REXX is that TSO/E provides support for a REXX
compiler and run-time library, such as the IBM Compiler and Library for REXX/370.
Using a compiler provides significant benefit for programmers during program
development and for users when a program is run.

What is a CLIST?
The CLIST language is a high-level interpretive language that enables you to work
more efficiently with TSO/E. You can write programs, called CLISTs (or command
procedures), that perform given tasks or groups of tasks. CLISTs can handle any
number of tasks, from issuing multiple TSO/E commands to invoking programs
written in other languages.

Because the CLIST language is an interpretive language, CLISTs are easy to test
and do not require you to compile or link-edit them. To test a CLIST, you simply
execute it, correct any errors, and re-execute it.

The CLIST language supports a range of programming functions including:

v CLIST statements that allow you to write structured programs, perform I/O, define
and modify variables, and handle errors and attention interruptions.

v Arithmetic and logical operators for processing numeric data.

v String-handling functions for processing character data.

CLISTs can perform a range of tasks. For example,

v CLISTs can perform routine tasks, such as allocating data sets that are required
for particular programs.

v The CLIST language enables you to write structured applications by invoking
other CLISTs, defining common data among nested CLISTs, and passing
parameters between CLISTs.

CLISTs allow you to write interactive applications by issuing commands of ISPF
to display full-screen panels.

v CLISTs can provide easy-to-use interfaces to applications written in other
languages. CLISTs can prompt terminal users for information on the tasks they
request, set up the environment needed for the application, and then issue the
commands needed to invoke the application program.

What is a REXX Exec?

4 z/OS V1R4.0 TSO/E Programming Guide

For information on creating, executing, and testing CLISTs, see z/OS TSO/E
CLISTs.

What is a Command Processor?
TSO/E provides commands that you can use to perform a wide variety of tasks. For
example, you can use TSO/E commands to define and maintain data sets, and
write and test programs.

You can write command processors to replace or add to this set of commands. By
writing your own command processors, your installation can add to or modify
TSO/E to better suit the needs of its users.

A command processor is a program (written in assembler language, PL/1, or REXX)
that receives control when a user at a terminal enters a command name. It is given
control by the terminal monitor program (TMP), a program that provides an interface
between terminal users and command processors, and has access to many system
services.

The main difference between command processors and other programs is that
when a command processor is invoked, it is passed a command processor
parameter list (CPPL) that gives the program access to information about the caller
and to system services.

Command processors must be able to communicate with the user at the terminal,
as well as respond to abnormal terminations and attention interruptions. Command
processors can recognize subcommand names entered by the terminal user and
then load and pass control to the appropriate subcommand processor.

You can use many of the services documented in z/OS TSO/E Programming
Services to write a command processor. For example, you can use the TSO/E
service facility (IKJEFTSR) to invoke other commands, CLISTs or programs. Part 2,
“Writing a Command Processor” provides guidelines on how to write a command
processor, what TSO/E services to use, and how to test and install a command
processor.

Considerations for Writing REXX Execs, CLISTs and Command
Processors

Often, you can perform the same programming functions by writing a program that
is a command processor, a REXX exec, or a CLIST. For example, you can write
any of these types of programs to do the following:

v List all of the users who have exclusive use of a resource, such as a data set

v List all of the data sets having a certain attribute, such as a record format of FB

v Process and display accounting information

v List the members of a partitioned data set

You can often solve application problems by combining the best attributes of REXX
execs, CLISTs and command processors. For example, you can write a REXX exec
or CLIST that interacts with the user, and then invokes a command processor to
perform the primary processing.

Consider the following when deciding whether to implement a function as a
command processor, REXX exec or CLIST:

What is a CLIST?

Chapter 1. Programming Using TSO/E 5

v Environment in which the program executes.

CLISTs and command processors execute in a TSO/E environment only.
However, you can write REXX execs to execute in both TSO/E and other
environments, because a subset of the REXX language is independent of both
operating system software and hardware.

v Features of the programming language used.

A command processor must be written in assembler language. Thus, you must
assemble and link-edit your program before executing it. However, a benefit of
assembler language is that a command processor can access system services,
such as those provided by data management and supervisor macro instructions.

The REXX and CLIST languages are high-level languages that support a wide
range of programming functions. For example, REXX and CLIST allow you to
perform I/O, invoke TSO/E commands and perform arithmetic operations. Both
languages are interpretive; therefore, you are not required to compile or link-edit
the program before executing it.

v Performance considerations.

Because REXX is an interpretive language, each line is scanned, processed, and
executed every time the program is run. For large REXX execs, this can result in
reduced performance when compared to a program that is in load module form
for execution.

If you make your program available to many people, or if the program is used
often, you should consider the performance aspect carefully. A large program
may be more efficient if it is written as a command processor.

REXX execs that are allocated to the SYSPROC system level file or the
SYSPROC application level file are compressed when they are stored in the VLF
data repository. In general, compression strips comments and leading and trailing
blanks. Blank lines are replaced with null lines. For details on file compression
restrictions, see “Storing REXX Execs in VLF Storage”.

The compression provides a potential performance benefit by reducing the
amount of data being stored in the VLF data space for each REXX exec:

– The reduction in file size means a reduction in the amount of central,
expanded, and auxiliary storage used to process the REXX execs.

– There are fewer page-in I/O operations and cross-memory move operations
on each invocation of the REXX execs.

– File compression allows for more storage in the repository for the same
storage utilization.

Storing REXX Execs in VLF Storage
The author of the REXX exec can control whether a REXX exec allocated to a
SYSPROC system-level or application-level CLIST library is to be compressed. In
general, compression strips comments and leading and trailing blanks. Blank lines
are replaced with null lines. Details on file compression restrictions for REXX are
explained below.

Note: Automatic compression governed by the occurrence or non-occurrence of
SOURCELINE in an exec can be overridden by explicit use of a
compression indicator. You can specify either COMMENT or NOCOMMENT
in a special comment in line 1 of the exec, as described in “Controlling
REXX Exec Compression” on page 7 to control compression.

When the system compresses a REXX exec, it removes the comment text and
leaves the beginning and ending comment delimiters.

Considerations for Writing REXX Execs, CLISTs and Command Processors

6 z/OS V1R4.0 TSO/E Programming Guide

Controlling REXX Exec Compression
The following describes the control that you have over the compression of REXX
execs in the VLF repository.

If you do not want an exec to be compressed, you can allocate the exec to either
the SYSEXEC file or the SYSPROC user-level file.

If the system finds an explicit occurrence of the characters SOURCELINE outside of
a comment in the exec and does not find a special comment with a compression
indicator, as explained below, it does not compress the exec. For example, if you
use the SOURCELINE built-in function, the system does not compress the exec. If
you use a variable called ASOURCELINE1 in the exec, the system does not
compress the exec because it locates the characters SOURCELINE within that
variable name. Note that the system does compress the exec if the exec contains a
“hidden” use of the characters SOURCELINE. For example, you may concatenate
the word SOURCE and the word LINE and then use the INTERPRET instruction to
interpret the concatenation or you may use the hexadecimal representation of
SOURCELINE. In these cases, the system does compress the exec because the
characters SOURCELINE are not explicitly found.

The author of a REXX exec can control whether an exec is compressed by
specifying a special comment in line 1 of the exec which contains a compression
indicator (that is, either COMMENT or NOCOMMENT).

To specify a compression indicator, the first begin-comment delimiter /* in line 1 of
the exec must be immediately followed by the special comment trigger character %.
If the REXX processor finds a special comment begin-delimiter /*%, it scans the
remainder of the comment looking for COMMENT or NOCOMMENT. Scanning
terminates when one of the following is found:
v An end-comment delimiter */
v Another begin-comment delimiter /*
v End of line 1

The NOCOMMENT compression indicator indicates to the REXX processor that all
comment text, except for the comment text within the special comment, is to be
removed from the exec at the time it is loaded and before it is stored into VLF.
(Comment removal constitutes exec compression.) COMMENT indicates to the
REXX processor that the exec should retain its comment text and that no comment
text should be removed.

Notes:

1. Only execs which are invoked as implicit execs and which are found in
SYSPROC or an application-level CLIST library defined by the TSO/E ALTLIB
command are eligible for compression. (This is true for both execs which are
compressed automatically, and those using controlled compression.)

Therefore, execs loaded from SYSEXEC are never compressed.

2. When TSO/E REXX scans the special comment for a compression indicator,
any keyword options that are not recognized are ignored. COMMENT and
NOCOMMENT are the only recognized keyword options.

3. If both COMMENT and NOCOMMENT are specified within a special comment,
only the last one specified is used.

4. Only EBCDIC characters should be used within the special comment.

5. If an exec is compressed, all comment text, except the comment text of the
special comment, and leading and trailing blanks within each line of the exec

Storing REXX Execs in VLF Storage

Chapter 1. Programming Using TSO/E 7

are removed. However, the text of the special comment, up to the first
begin-comment delimiter /*, end-comment delimiter */, or end-of-line
(whichever is first) is not removed.

v Although the comment text is removed, the begin-comment delimiter /* and
end-comment delimiter */ are not removed. After compression, a typical
comment will look like /**/.

v Blanks and comments within literal strings (delimited by single or double
quotation marks) are not removed.

v Blanks and comments within a DBCS string (delimited by shift-out (X'0E') and
shift-in (X'0F') are not removed.

v If comment lines are continued across several lines, blanks and text are
removed from the line, but the line itself and the begin- and end-comment
delimiters are kept to preserve relative line numbering.

Table 1 provides an overview of the conditions that cause an exec to be
compressed.

Table 1. Determining When an Exec is Compressed

Invoked
through
CALL
Instruction
or External
Function

Invoked
through
EXEC
Explicit
Form

Invoked through EXEC Implicit Form

User
Library

Application- or System-Level Library

Exec
Library

CLIST Library

COMMENT
Trigger

NOCOMMENT
Trigger

Neither COMMENT nor
NOCOMMENT Trigger

SOURCELINE
String Not
Used in Exec

SOURCELINE
String Used in
Exec

Do NOT
Compress

Do NOT
Compress

Do NOT
Compress

Do NOT
Compress

Do NOT
Compress

Compress Compress Do NOT
Compress

What is an APPC/MVS Transaction Program?
APPC/MVS transaction programs are application programs running on MVS or
TSO/E that use special calls to communicate with partner programs on the same
MVS system, other MVS systems, or other operating systems in a System Network
Architecture (SNA) network. To communicate, the transaction programs hold APPC
conversations; in the conversations, they exchange information using specific calls
and follow established conversation protocols.

APPC/MVS transaction programs can be involved with TSO/E in the following ways:

v You can write transaction programs in REXX using the LU62, CPICOMM, or
APPCMVS host command environments to issue APPC calls to a partner
transaction program. For more information on these host command
environments, see z/OS TSO/E REXX Reference.

Storing REXX Execs in VLF Storage

8 z/OS V1R4.0 TSO/E Programming Guide

v Programs on MVS, including APPC/MVS transaction programs, can use the
TSO/E environment service (IKJTSOEV) to create a TSO/E environment outside
of TSO/E. The programs can then use TSO/E services as described in z/OS
TSO/E Programming Services.

v Programmers can use the TSO/E TEST and TESTAUTH commands to test
certain transaction programs. The commands can be used with inbound
transaction programs—those that are initiated in response to inbound
conversation requests from their partner transaction programs. These inbound
transaction programs are specified on the TEST or TESTAUTH commands and,
when requested by their partner programs, are initiated for testing under TSO/E.
Outbound APPC/MVS transaction programs are those transaction programs that
are not initiated by inbound conversation requests. You can test these transaction
programs as ordinary programs using TEST or TESTAUTH (that is, do not
specify the TP, LU, BASELU, or KEEPTP keywords). For more information about
testing transaction programs on TSO/E, see z/OS TSO/E Command Reference.

For more information about APPC/MVS transaction programs in general, their
benefits for cross-system communication and how to write and use transaction
programs, see z/OS MVS Programming: Writing Transaction Programs for
APPC/MVS.

What is a Server?
The command processor provides a standard way for application programs to share
services. With this facility, programs on properly-configured IBM Personal
Computers (PCs) can obtain services from programs on IBM host computers. The
PC programs issue service requests and the host programs issue service replies,
which the TSO/E Enhanced Connectivity Facility passes between the systems.

The PC programs that issue service requests are called requesters, and the host
programs that issue replies are called servers. Servers can give PC requesters
access to host computer data, commands and resources such as printers and
storage. You can write servers to receive service requests, process the requests,
and return replies to the requester.

For information on how to write, install, test and debug a server program, see z/OS
TSO/E Guide to SRPI.

Overview of TSO/E Programming Services
TSO/E provides services that your programs can use to perform various tasks.
Although some of these services are discussed in this document, see z/OS TSO/E
Programming Services for a complete description.

Table 2 lists each TSO/E service and the task it supports.

Table 2. Summary of TSO/E Services

Task Service

Invoking TSO/E service routines CALLTSSR macro instruction

Checking the syntax of subcommand names Command scan service routine

Checking the syntax of command and
subcommand operands

Parse service routine

Controlling terminal functions and attributes Terminal control macro instructions

What is an APPC/MVS Transaction Program?

Chapter 1. Programming Using TSO/E 9

Table 2. Summary of TSO/E Services (continued)

Task Service

Processing terminal I/O BSAM and QSAM TSO/E I/O service
routines TGET/TPUT/TPG macros TSO/E
Message Handling Routine

Handling attention interruptions STAX service routine CLIST attention facility

Obtaining a list of data set names ICQGCL00

Ensuring that data sets contain enough
space

Space management

Changing alternative library environments Alternative library interface routine

Allocating, concatenating and freeing data
sets

Dynamic allocation interface routine

Retrieving information from the system
catalog

Catalog information routine

Constructing a fully-qualified data set name Default service routine

Analyzing return codes DAIRFAIL GNRLFAIL/VSAMFAIL

Searching lists of authorized commands, as
well as programs and commands not
supported in the background

Table look-up service

Invoking commands, CLISTs, REXX execs
and programs

TSO/E service facility

Accessing CLIST and REXX variables Variable access routine

Retrieving information from the names
directory

ICQCAL00

Displaying printers Printer support CLISTs

Invoking Information Center Facility
applications

Application invocation function

Retrieving system messages issued during a
console session

GETMSG service

Establishing a TSO/E environment outside of
the TSO/E TMP

TSO/E environment service

Syntax Notational Conventions
The following paragraphs describe the notation that this document uses to define
the command syntax and format.

1. The set of symbols listed below is used to define the format. Do not type them
when you enter the command.
— hyphen
_ underscore
{ } braces
[] brackets
... ellipsis

The special uses of these symbols are explained in the following paragraphs.

2. You can type uppercase letters, numbers, and the set of symbols listed below
exactly as shown in the statement definition when you enter the command.
’ apostrophe
* asterisk

Overview of TSO/E Programming Services

10 z/OS V1R4.0 TSO/E Programming Guide

, comma
= equal sign
() parentheses
. period

3. Lowercase letters and symbols appearing in a command definition represent
variables for which you can substitute specific information when you enter the
command.

For example, if name appears in a command definition, you can substitute a
specific value (for example, ALPHA) for the variable when you enter the
command.

4. Hyphens join lowercase words and symbols to form a single variable.

For example, if member-name appears in the command syntax, you should
substitute a specific value (for example, BETA) for the variable when you enter
the command.

5. The default option is indicated by an underscore. If you do not specify anything,
you automatically get the default option. For example,
LOGOFF [DISCONNECT]

[HOLD]

indicates you can select DISCONNECT or HOLD. However, if no operand is
specified, the default is DISCONNECT.

6. Braces group related items, such as alternatives. You must choose one of the
items enclosed within the braces. For example,
CALL {dsname }

{dsname (membername) }

indicates if you select dsname (membername), the result is CALL dsname
(membername).

7. Brackets also group related items. However, everything within the brackets is
optional and can be omitted. For example,
PROTECT data-set-name[PWREAD]

[NOPWREAD]

indicates you can choose one of the items enclosed within the brackets or you
can omit both items within the brackets.

8. An ellipsis indicates the preceding item or group of items can be repeated more
than once in succession. For example,
DELETE (entryname[/ password][...])

indicates an entry name and associated optional password you can repeat any
number of times in succession.

Syntax Notational Conventions

Chapter 1. Programming Using TSO/E 11

Syntax Notational Conventions

12 z/OS V1R4.0 TSO/E Programming Guide

Part 2. Writing a Command Processor

TSO/E provides commands that you can use to perform a wide variety of tasks. For
example, you can use TSO/E commands to define and maintain data sets, and
write and test programs.

You can write command processors to replace or add to this set of commands. By
writing your own command processors, your installation can add to or modify
TSO/E to better suit the needs of its users.

A command processor is a program that is given control by the terminal monitor
program (TMP) when a user at a terminal enters a command name. The TMP
provides an interface between terminal users and command processors and has
access to many system services.

If you choose to write your own command processors, you can use the command
processors and service routines provided by TSO/E to perform many of the
functions required by a command processor. The programming services available in
TSO/E consist of service routines, macros, SVCs and CLISTs, and are discussed in
z/OS TSO/E Programming Services.

Part 2 of this document contains several chapters that describe what you must do
to write, install, execute and test a command processor. Chapter 2 presents the
concepts and terminology that you must understand before you read the later
chapters. Chapter 3 outlines the steps to follow when writing a command processor
and refers you to later chapters for the details of each step. Read all of Chapter 2
and Chapter 3 and then selectively read the subsequent chapters.

© Copyright IBM Corp. 1988, 2002 13

14 z/OS V1R4.0 TSO/E Programming Guide

Chapter 2. What is a Command Processor?

The TSO/E Environment . 15
The Command Processor Parameter List (CPPL) 15

Accessing the User Profile Table Without a CPPL 17
Command Syntax . 18
What is a Subcommand Processor? 18

A command processor is a program invoked by the terminal monitor program (TMP)
when a user at a terminal enters a command name. The TMP is a program that
accepts and interprets commands, and causes the appropriate command processor
to be scheduled and executed. The TMP also communicates with the terminal user,
responds to abnormal terminations and processes attention interruptions.

The TSO/E Environment
When a user logs on to TSO/E, the program specified on the EXEC statement of
the user’s LOGON procedure is attached during logon processing as the TMP. After
the logon is complete, the TMP writes a READY message to the terminal to request
that the terminal user enters a command name. The TMP determines whether the
user’s response is a command name. If a command is entered, the TMP attaches
the requested command processor and the command processor then performs the
functions requested by the user.

The Command Processor Parameter List (CPPL)
The interface between the TMP and an attached command processor is shown in
Figure 1 on page 16.

© Copyright IBM Corp. 1988, 2002 15

When the TMP attaches a command processor, register 1 contains a pointer to a
command processor parameter list (CPPL) containing addresses required by the
command processor. The CPPL is a four-word parameter list that is located in
subpool 1. Table 3 describes the contents of the CPPL.

Table 3. The Command Processor Parameter List (CPPL)

Number of
Bytes

Field Name Contents or Meaning

4 CPPLCBUF The address of the command buffer for the currently attached
command processor.

4 CPPLUPT The address of the user profile table (UPT). Use the IKJUPT
mapping macro, which is provided in SYS1.MACLIB, to map the
fields in the UPT.

4 CPPLPSCB The address of the protected step control block (PSCB). Use
the IKJPSCB mapping macro, which is provided in
SYS1.MACLIB, to map the fields in the PSCB.

4 CPPLECT The address of the environment control table (ECT). Use the
IKJECT mapping macro, which is provided in SYS1.MACLIB, to
map the fields in the ECT.

The first word of the CPPL contains the address of the command buffer for the
currently attached command processor. As the TMP receives a line of input from the
terminal user, the input is placed into the command buffer. After determining that the

Terminal

Monitor

Program

Command

Processor

Register 1

CPPL

ATTACH

Figure 1. Interface between the TMP and a Command Processor

The TSO/E Environment

16 z/OS V1R4.0 TSO/E Programming Guide

user has entered a command name, the TMP attaches the appropriate command
processor. Figure 2 shows the format of the command buffer.

When your command processor receives control, the fields in the command buffer
appear as follows:

v The two-byte length field contains the length of the command buffer, including the
four-byte header.

v If the terminal user specified operands, the offset field contains the number of
text bytes preceding the first operand. Otherwise, the offset field contains the
length of the text portion of the buffer.

v The text field contains the command name, in uppercase characters, followed by
any operands the user specified.

Accessing the User Profile Table Without a CPPL
A program that is invoked in a TSO/E environment may require information from the
user profile table (UPT). For example, the language a user has selected is defined
by the UPTLANG field of the UPT. The program, however, might not have access to
the command processor parameter list (CPPL), which contains the UPT address. A
program that does not have access to the CPPL can access the UPT though the
protected step control block (PSCB). The PSCB contains the PSCBUPT field, which
points to the UPT. MVS provides the mapping macro IKJPSCB for the PSCB.

You can access the PSCB by issuing the EXTRACT macro to request the address
of the PSCB. For information about the EXTRACT macro, see z/OS MVS
Programming: Authorized Assembler Services Reference ENF-IXG.

Figure 3 illustrates the two ways a program can access the PSCB.

Length Offset Text

2 Bytes 2 Bytes

Length

Figure 2. Format of the Command Buffer

EXTRACT FIELD=PSB──┐
│
│
│

PSA │
┌───────────┐ TCB │
│ │ ┌───────────┐ JSCB >
│ PSATOLD │─────?│ │ ┌───────────┐ PSCB
│ │ │ TCBJSCB │─────?│ │ ┌───────────┐ UPT
└───────────┘ │ │ │ JSPSCB │─────?│ │ ┌───────────┐

└───────────┘ │ │ │ PSCBUPT │─────?│ │
└───────────┘ │ │ │ UPTLANG │

└───────────┘ │ │
└───────────┘

Figure 3. Chaining of Control Blocks and Fields to the UPT

The TSO/E Environment

Chapter 2. What is a Command Processor? 17

Figure 3 on page 17 shows the control blocks and fields that support the path to the
UPT. MVS provides the mapping macros for these control blocks. Table 4 relates
the mapping macros to the control blocks shown in Figure 3 on page 17.

Table 4. Mapping Macros for Control Blocks that Chain to the UPT

Control Block Mapping Macro

PSA IHAPSA

TCB IKJTCB

JSCB IEZJSCB

PSCB IKJPSCB

UPT IKJUPT

Command Syntax
A command consists of a command name, optionally followed by one or more
operands. Operands provide the specific information required for the command
processor to perform the requested operation. For example, the first two operands
for the RENAME command identify the data set to be renamed and specify the new
name:

RENAME OLDNAME NEWNAME [ALIAS]
command name operand_1

(old data set name)
operand_2
(new data set name)

operand_3

There are two types of operands that can follow a command name: positional
operands and keyword operands. Positional operands immediately follow the
command name and must be in a specific order. Keyword operands are specific
names or symbols that have a particular meaning to the command processor. The
terminal user can enter keyword operands anywhere in the command line as long
as they follow all positional operands. A keyword operand can have a subfield
associated with it. A subfield consists of a parenthesized list of positional or
keyword operands directly following the keyword.

In the example above, OLDNAME and NEWNAME are positional operands; ALIAS is a
keyword operand. The braces around ALIAS indicate that the operand is not
required.

The terminal user can enter comments in the command line anywhere a blank
might appear by enclosing the text within the delimiters /* and */.

What is a Subcommand Processor?
If your command processor must perform a large number of complex functions, you
can divide this work into individual operations. Each operation can be defined and
performed by a subcommand processor. The user requests one of the operations
by first entering the name of the command, and then entering a subcommand to
indicate which individual operation should be performed. For example, the TSO/E
EDIT command has subcommands. After entering the EDIT command, the user can
then enter the subcommands for EDIT.

Accessing the User Profile Table Without a CPPL

18 z/OS V1R4.0 TSO/E Programming Guide

Chapter 3. Writing a Command Processor

This chapter describes the steps to follow when writing, installing and executing a
command processor. Further details are contained in subsequent chapters.

1. Write the assembler language program.

v Access the command processor parameter list (CPPL).

When a command processor receives control from the TMP, register 1
contains the address of the CPPL. Use the IKJCPPL DSECT, provided in
SYS1.MACLIB, to map the fields in the CPPL. Your command processor can
then access the symbolic field names within the IKJCPPL DSECT by using
the address contained in register 1 as the starting address for the DSECT.
The use of the DSECT is recommended since it protects the command
processor from any changes to the CPPL.

v Validate any operands entered with the command.

Your command processor must verify that the operands the user specified on
the command are valid. Use the parse service routine (IKJPARS) to scan and
verify the operands, and prompt the user if operands are incorrect or if
required operands are missing. See Chapter 4, “Validating Command
Operands” on page 21 for a description of the functions provided by the parse
service routine.

v Communicate with the user at the terminal.

Your command processor may need to obtain data from the terminal, prompt
the user for input, and write messages or data to the terminal. You may also
want to display full-screen panels. For information on terminal I/O and
full-screen processing, see Chapter 5, “Communicating with the Terminal
User” on page 35.

v Perform the function of the command according to any operands the user
specified.

The operands that the user specified on the command indicate which
functions your command processor should perform. You can use system
services and the services provided by TSO/E to perform many functions. For
example, your command processor can use the TSO/E service facility to
invoke other commands, programs, CLISTs, or REXX execs.

v Recognize and pass control to any subcommands.

If you have chosen to implement subcommands, your command processor
must be able to recognize a subcommand name entered by the terminal user
and pass control to the requested subcommand processor. For a description
of the steps involved, see Chapter 6, “Passing Control to Subcommand
Processors” on page 49.

v Intercept and process abnormal terminations.

Your command processor must be able to intercept abnormal terminations
and perform the processing needed to keep the system operable. For
information on writing error handling routines, see Chapter 7, “Processing
Abnormal Terminations” on page 53.

v Respond to and process attention interruptions entered from the terminal.

If your command processor accepts subcommands or operates in full-screen
mode, it must be able to respond to an attention interruption entered by the
terminal user. Your command processor must provide an attention exit to
obtain a line of input from the terminal after an attention interruption occurs.
For more information, see Chapter 8, “Processing Attention Interruptions” on
page 57.

© Copyright IBM Corp. 1988, 2002 19

v Set the return code in register 15 and return control to the TMP.

When returning control to the TMP, your command processor must follow
standard linkage conventions and set a return code in register 15. CLISTs
that invoke your command processor can check the return code, which is
contained in the variable &LASTCC, to determine whether processing was
successful. Your command processor should set one of the following return
codes in register 15:

Return Code
Dec(Hex)

Meaning

0(0) The command processor has executed normally.

12(C) An error encountered during execution has caused the command
processor to terminate. Note that an error does not occur when the
command processor is able to obtain the required information by
prompting the user.

2. Create HELP information.

If you plan to make your command processor available to other TSO/E users,
you should provide HELP information about the command and its operands. You
should also provide HELP information about any subcommands and their
operands. HELP information is displayed at the terminal when the user enters
the HELP command and specifies the name of the command or subcommand.
See Chapter 9, “Creating HELP Information” on page 65.

3. Assemble the command processor.

After you code your command processor, you must assemble the source into
object code and place it in an object module. For more information, see
Chapter 13, “Compiling and Assembling Programs” on page 81.

4. Install the command processor.

For a description of the methods that you can use to add your new command
processor to TSO/E, see Chapter 10, “Installing a Command Processor” on
page 71.

5. Test the command processor, and correct any errors.

See Chapter 11, “Executing and Testing a Command Processor” on page 73.

Writing a Command Processor

20 z/OS V1R4.0 TSO/E Programming Guide

Chapter 4. Validating Command Operands

Using the Parse Service Routine 21
Checking Positional Operands for Logical Errors 22
Checking Unidentified Keyword Operands 23
Using the Prompt Mode HELP Function. 23

A Sample Command Processor 24

When your command processor receives control, it must verify that operands
entered with the command are valid and that required operands are specified. This
chapter introduces the parse service routine and describes how it can be used to
determine the validity of command operands. For a complete description of the
parse service routine, see z/OS TSO/E Programming Services.

Using the Parse Service Routine
When you write a command processor to run under TSO/E, you need a method to
determine whether the command operands specified by the user are syntactically
correct. The parse service routine (IKJPARS) performs this function by searching
the command buffer for valid operands. If a required operand is missing, or if the
user has entered an operand incorrectly, parse can prompt the user. The user can
enter question marks to receive any second-level messages supplied by your
command processor that are associated with the operand. Second-level messages
provide additional explanation of the initial message. Parse can also display HELP
information for an operand after the second-level messages have been issued.

Parse recognizes positional and keyword operands. Positional operands occur first,
and must be in a specific order. Keyword operands can be entered in any order, as
long as they follow all of the positional operands.

Although parse recognizes comments present in the command buffer, it processes
them by simply skipping over them. Comments, which are indicated by the
delimiters /* and */, are not removed from the command buffer.

Before invoking the parse service routine, your command processor must use the
parse macro instructions to create a parameter control list (PCL), which describes
the permissible operands. You then invoke the parse service routine to compare the
information supplied by your command processor in the PCL to the operands in the
command buffer. Each acceptable operand must have an entry built for it in the
PCL; an individual entry is called a parameter control entry (PCE).

Parse returns the results of scanning and checking the operands in the command
buffer to the command processor in a parameter descriptor list (PDL). The entries in
the PDL, called parameter descriptor entries (PDEs), indicate which operands are
present in the command buffer. These operands indicate to your command
processor the functions the user is requesting.

When your command processor invokes the parse service routine, it must pass a
parse parameter list (PPL), which contains pointers to control blocks and data areas
that are needed by parse. Addresses needed to access the PCL, PDL and
command buffer are included in the parse parameter list.

When the parse service routine finishes processing, it passes a return code in
register 15 to your command processor. Your command processor should issue

© Copyright IBM Corp. 1988, 2002 21

meaningful error messages for all non-zero return codes. The GNRLFAIL routine,
which is discussed in z/OS TSO/E Programming Services can be used for this
purpose.

Figure 4 shows the interaction between a command processor and the parse
service routine.

Checking Positional Operands for Logical Errors
Because the parse service routine checks the command operands only for syntax
errors, you must write validity checking routines when it is also necessary to check
positional operands for logical errors. Each positional operand can have a unique
validity checking routine.

To indicate that a validity checking routine is to receive control, code the entry point
address of the routine on the parse macro instruction that describes the operand.
The validity checking routine you provide for a positional operand receives control
after the parse service routine determines that the operand is specified and is
syntactically valid.

Length Offset Command Name

Command Buffer

The Command
Processor uses the
IKJPARMD DSECT
to access the
various PDEs within
the PDL.

Parse Service RoutineCommand Processor

0 2 4

Builds the PDL.

CALLTSSR/LINK to Parse

PCL

PCE1

PCE2

PCE3

PDL

PDE

PDE

PDE

Return to the Command Processor

label1

label2

label3

Operand 1 Operand 2 Operand 3

Issues Parse macro
instructions to build
a PCL describing
valid operands

label1 Macro
label2 Macro
label3 Macro

These macro
instructions also
create the
IKJPARMD DSECT.

IKJPARMD
DSECT

Compares PCE's to
operands in the
Command Buffer.

Figure 4. A Command Processor Using the Parse Service Routine

Using the Parse Service Routine

22 z/OS V1R4.0 TSO/E Programming Guide

When parse passes control to a validity checking routine, it passes a validity check
parameter list, which contains the address of the PDE parse built to describe the
positional operand. Your validity checking routine can use the information in the
PDE to perform additional checking on the operand.

When processing is complete, the validity checking routine must pass a return code
in general register 15 to the parse service routine. The return code informs parse of
the results of the validity check and determines the action that parse takes.

Checking Unidentified Keyword Operands
For certain keyword operands, you may want to bypass the syntax checking facility
of the parse service routine by providing an alternate method of determining the
validity of the operand. To accomplish this, use the parse macro instruction
IKJUNFLD and provide a verify exit routine to determine if the operand is valid.

Use the IKJUNFLD macro instruction to indicate that the parse service routine
should accept an unidentified keyword operand that is present in the command
buffer. An unidentified keyword operand is an operand that is not specifically
defined in the parameter control list (PCL). This macro can also be used to indicate
that parse should accept unidentified keyword operands within a subfield.

If you code the IKJUNFLD macro instruction, parse accepts unidentified keyword
operands, but does not perform any validity checking on them. Your command
processor must supply a verify exit routine to perform checking on these operands.
Indicate that a verify exit routine is to receive control by coding the entry point
address of the routine on the IKJUNFLD macro instruction.

When parse passes control to a verify exit routine, it passes a verify exit parameter
list, which contains the address of a parse parameter element that parse built to
describe the operand being processed. Your verify exit routine can use this
information to examine the operand and determine its validity.

When processing is complete, the verify exit routine must pass a return code in
general register 15 to the parse service routine. The return code informs parse of
the results of the check and determines the action that parse takes.

Using the Prompt Mode HELP Function
When the parse service routine prompts the user to enter a required operand, or to
reenter a syntactically incorrect operand, the user can enter question marks to
receive second-level messages associated with the operand. If a question mark is
entered and no second-level messages were provided, or they have all been issued
in response to previous question marks, parse determines whether it can generate
a valid HELP command to provide the user with additional information.

Whether parse can generate a HELP command depends upon the setting of the
ECTNOQPR bit in the environment control table (ECT). The ECT is pointed to by
the command processor parameter list (CPPL) that is passed to your command
processor when it receives control. For information on the ECT, see Table 3 on
page 16.

If the ECTNOQPR bit in the ECT is zero, then the prompt mode HELP function is
active and parse processing generates a HELP command on the user’s behalf.
Parse ensures that only one HELP command is issued during a prompting

Using the Parse Service Routine

Chapter 4. Validating Command Operands 23

sequence for a given operand. If the user enters another question mark after
viewing the on-line usage information, the NO INFORMATION AVAILABLE message
is issued.

When your command processor receives control, the ECTNOQPR bit in the ECT is
set to zero, which activates the prompt mode HELP function. However, parse sets
ECTNOQPR to one before it returns control to the command processor. Therefore,
the prompt mode HELP function is not active during subsequent invocations of
parse from your command processor or from any subcommands attached by your
command processor.

If your command processor accepts subcommands and wants the prompt mode
HELP function to be available for a subcommand, it should set ECTNOQPR to zero
before attaching the subcommand. The command processor should also ensure
that the ECTPCMD and ECTSCMD fields in the ECT contain the command name
and the subcommand name, respectively.

If you do not want the prompt mode HELP function to be active, your command
processor should set the ECTNOQPR bit to one before it invokes parse for the first
time.

To make this function available for your command processor, create a HELP
member as described in Chapter 9, “Creating HELP Information” on page 65.

A Sample Command Processor
The sample command processor in Figure 5 on page 25 demonstrates the use of
the parse service routine. A validity checking routine is also provided. The syntax for
the sample command is:

where dsname is a positional operand and ACTION/NOACTION are keyword
operands. NOACTION is the default if neither ACTION nor NOACTION are
specified.

PROCESS dsname [ACTION]
[NOACTION]

Using the Parse Service Routine

24 z/OS V1R4.0 TSO/E Programming Guide

PROCESS TITLE ’SAMPLE TSO/E COMMAND PROCESSOR ’
PROCESS CSECT ,
PROCESS AMODE 31 COMMAND’S ADDRESSING MODE
PROCESS RMODE 31 COMMAND’S RESIDENCY MODE

* *
* TITLE - PROCESS *
* *
* DESCRIPTION - SAMPLE TSO/E COMMAND PROCESSOR *
* *
* FUNCTION - THIS SIMPLE COMMAND PROCESSOR DEMONSTRATES THE USE *
* OF THE PARSE SERVICE ROUTINE TO SYNTAX CHECK THE *
* COMMAND OPERANDS. *
* *
* OPERATION - PROCESS IS A REENTRANT COMMAND PROCESSOR THAT PERFORMS *
* THE FOLLOWING PROCESSING: *
* *
* 1 - ESTABLISHES ADDRESSABILITY AND SAVES THE CALLER’S REGISTERS *
* 2 - ISSUES A GETMAIN FOR DYNAMIC STORAGE *
* 3 - USES THE PARSE SERVICE ROUTINE (IKJPARS) TO DETERMINE THE *
* VALIDITY OF THE COMMAND OPERANDS *
* 4 - PROVIDES A VALIDITY CHECKING ROUTINE TO PERFORM ADDITIONAL *
* CHECKING OF THE POSITIONAL OPERAND *
* 5 - ISSUES A FREEMAIN TO RELEASE THE DYNAMIC STORAGE *
* 6 - RESTORES THE CALLER’S REGISTERS BEFORE RETURNING *
* 7 - RETURNS TO THE TMP WITH A RETURN CODE IN REGISTER 15 *
* *

*
PROCESS CSECT

STM R14,R12,12(R13) SAVE CALLER’S REGISTERS
LR R11,R15 ESTABLISH ADDRESSABILITY WITHIN
USING PROCESS,R11 THIS CSECT
LR R2,R1 SAVE THE POINTER TO THE CPPL

* AROUND THE GETMAIN
GETMAIN RU,LV=L_SAVE_AREA OBTAIN A DYNAMIC WORK AREA
USING SAVEAREA,R1 AND ESTABLISH ADDRESSABILITY
ST R1,8(R13) PUT THE ADDRESS OF PROCESS’S SAVE

* AREA INTO THE CALLER’S SAVE AREA
ST R13,B_PTR PUT THE ADDRESS OF PROCESS’S SAVE

* AREA INTO ITS OWN SAVE AREA
LR R13,R1 LOAD GETMAINED AREA ADDRESS
USING SAVE_AREA,R13 POINT TO THE DYNAMIC AREA
DROP R1 DON’T USE R1 ANY MORE

Figure 5. A Sample Command Processor (Part 1 of 9)

A Sample Command Processor

Chapter 4. Validating Command Operands 25

GETMAIN RU,LV=L_WORK_AREA OBTAIN A DYNAMIC WORK AREA
USING WORKA,R1 AND ESTABLISH ADDRESSABILITY TO

* THE DYNAMIC WORK AREA
STM R0,R1,WORK_AREA_GM_LENGTH SAVE LENGTH AND ADDR OF

* DYNAMIC AREA
LR R10,R1 GET READY TO USE R10 AS THE
USING WORKA,R10 DATA AREA SEGMENT BASE REGISTER
DROP R1
ST R2,CPPL_PTR SAVE THE POINTER TO THE CPPL

* *
* MAINLINE PROCESSING *
* *

*

XC RETCODE,RETCODE INITIALIZE THE RETURN CODE
GETMAIN RU,LV=L_PPL OBTAIN A DYNAMIC PPL WORK AREA
STM R0,R1,PPL_LENGTH SAVE LENGTH AND ADDR OF DYNAMIC PPL
GETMAIN RU,LV=L_ANSWER OBTAIN A DYNAMIC PPL ANSWER AREA
STM R0,R1,ANSWER_LENGTH SAVE LENGTH AND ADDR OF DYNAMIC PPL

* ANSWER AREA
L R2,PPL_PTR GET THE ADDRESS OF THE PPL
USING PPL,R2 AND ESTABLISH ADDRESSABILITY
L R1,CPPL_PTR GET ADDRESS OF CPPL
USING CPPL,R1 AND ESTABLISH ADDRESSABILITY
MVC PPLUPT,CPPLUPT PUT IN THE UPT ADDRESS FROM CPPL
MVC PPLECT,CPPLECT PUT IN THE ECT ADDRESS FROM CPPL
MVC PPLCBUF,CPPLCBUF PUT IN THE COMMAND BUFFER ADDRESS

* FROM THE CPPL
L R1,WORK_AREA_GM_PTR GET THE ADDRESS OF THE COMMAND

* PROCESSOR’S DYNAMIC WORK AREA TO
ST R1,PPLUWA BE PASSED TO THE VALIDITY CHECK

* ROUTINE
DROP R1
L R1,ANSWER_PTR GET THE ADDRESS OF THE PARSE

* ANSWER AREA AND
ST R1,PPLANS STORE IT IN THE PPL
XC ECB,ECB CLEAR COMMAND PROCESSOR’S

* EVENT CONTROL BLOCK (ECB)
LA R1,ECB GET THE ADDRESS OF THE COMMAND

* PROCESSOR’S ECB AND
ST R1,PPLECB PUT IT IN THE PPL
L R1,PCLADCON GET THE ADDRESS OF THE PCL AND
ST R1,PPLPCL PUT IT IN THE PPL FOR PARSE
CALLTSSR EP=IKJPARS,MF=(E,PPL) INVOKE PARSE
DROP R2
LTR R15,R15 IF PARSE RETURN CODE IS ZERO
BZ PROCESS PERFORM PROCESSING FOR THE COMMAND
MVC RETCODE(4),ERROR SET CP RETURN CODE TO 12
B CLEANUP PREPARE TO RETURN TO THE TMP

Figure 5. A Sample Command Processor (Part 2 of 9)

A Sample Command Processor

26 z/OS V1R4.0 TSO/E Programming Guide

*
PROCESS DS 0H
* .
* .
* .
*
* CODE TO PERFORM THE FUNCTION OF THE COMMAND PROCESSOR GOES HERE.
* AFTER CALLING THE PARSE SERVICE ROUTINE TO VALIDATE THE COMMAND
* OPERANDS, USE THE PDL RETURNED BY PARSE TO DETERMINE WHICH
* OPERANDS THE USER ENTERED. THEN PERFORM THE FUNCTION REQUESTED
* BY THE USER.
*
* .
* .
* .
*
*

* *
* CLEANUP AND TERMINATION PROCESSING *
* *

*
CLEANUP DS 0H

L R1,PPL_PTR POINT TO PPL IN DYNAMIC WORK AREA
FREEMAIN RU,LV=L_PPL,A=(1) FREE THE STORAGE FOR THE PPL
L R1,ANSWER_PTR POINT TO THE ANSWER PLACE
L R1,0(0,R1) POINT TO THE PDL
IKJRLSA (R1) FREE STORAGE THAT PARSE ALLOCATED

* FOR THE PDL
L R1,ANSWER_PTR POINT TO THE ANSWER PLACE
FREEMAIN RU,LV=L_ANSWER,A=(1) FREE THE STORAGE FOR THE

* ANSWER WORD
L R5,RETCODE SAVE RETURN CODE AROUND FREEMAIN
L R1,WORK_AREA_GM_PTR POINT TO MODULE WORK AREA
FREEMAIN RU,LV=L_WORK_AREA,A=(1)

* FREE THE MODULE WORKAREA
LR R1,R13 LOAD PROCESS’S SAVE AREA ADDRESS
L R13,B_PTR CHAIN TO PREVIOUS SAVE AREA
DROP R13

FREEMAIN RU,LV=L_SAVE_AREA,A=(1) FREE THE MODULE SAVEAREA
L R14,12(R13) HERE’S OUR RETURN ADDRESS
LR R15,R5 HERE’S THE RETURN CODE
LM R0,R12,20(R13) RESTORE REGS 0-12
BSM 0,R14 RETURN TO the TMP

Figure 5. A Sample Command Processor (Part 3 of 9)

A Sample Command Processor

Chapter 4. Validating Command Operands 27

* POSITCHK - IKJPOSIT VALIDITY CHECKING ROUTINE *
* *
* IF THE DATA SET NAME HAS A PREFIX OF SYS1 THEN THE VALIDITY *
* CHECKING ROUTINE RETURNS A CODE OF 4 TO PARSE. THIS RETURN *
* CODE INDICATES TO PARSE THAT IT SHOULD ISSUE A MESSAGE TO THE *
* TERMINAL AND PROMPT THE USER TO RE-ENTER THE DATA SET NAME. *
* *
* IF THE DATA SET PREFIX IS ANYTHING OTHER THAN SYS1, THEN *
* THIS ROUTINE RETURNS A CODE OF 0 TO PARSE. *
* *

DROP R10 WE WILL REUSE REGISTER 10
POSITCHK DS 0D

STM R14,R12,12(R13) SAVE PARSE’S REGISTERS
LR R9,R15
USING POSITCHK,R9 ESTABLISH ADDRESSABILITY
LR R2,R1 SAVE THE VALIDITY CHECK PARAMETER

* LIST PARSE PASSED TO US
GETMAIN RU,LV=L_SAVE_AREA OBTAIN A DYNAMIC SAVE AREA FOR

* THE POSITCHK ROUTINE
USING SAVEAREA,R1 AND ESTABLISH ADDRESSABILITY
ST R1,8(R13) PUT THE ADDRESS OF THIS ROUTINE’S

* SAVE AREA INTO PARSE’S SAVE AREA
ST R13,B_PTR PUT THE ADDRESS OF THIS ROUTINE’S

* SAVE AREA INTO ITS OWN SAVE AREA
* FOR CALLING

LR R13,R1 LOAD ADDRESS OF GETMAINED AREA
USING SAVEAREA,R13 AND ESTABLISH ADDRESSABILITY
L R10,4(R2) POINT TO THE COMMAND PROCESSOR’S

* ORIGINAL DYNAMIC WORK AREA
USING WORKA,R10 DATA AREA SEGMENT BASE REGISTER
ST R2,VALCHK_PARAMETER_LIST_PTR

* SAVE THE ADDRESS OF THE VALIDITY
* CHECK PARAMETER LIST

LM R1,R3,0(R2) GET THE ADDRESS OF THE PDE
STM R1,R3,VALIDITY_CHECK_PARAMETER_LIST

* SAVE CONTENTS OF PARAMETER LIST
XC POSITCHK_RETCODE,POSITCHK_RETCODE

* MAKE SURE WE START WITH A ZERO
* RETURN CODE

Figure 5. A Sample Command Processor (Part 4 of 9)

A Sample Command Processor

28 z/OS V1R4.0 TSO/E Programming Guide

L R2,PDEADR GET THE ADDRESS OF THE PDE
USING DSNAME_PTR,R2 AND ESTABLISH ADDRESSABILITY TO

* OUR MAPPING OF THE PDE
TM DSNAME_FLAGS1,QUOTE IS THE DATA SET NAME IN QUOTES?
BNO DSNOK NO - DATA SET NAME IS OK
L R4,DSNAME_PTR POINT TO THE DSN
CLC 0(L’SYS1,R4),SYS1 IS HIGH LEVEL-DESCRIPTOR SYS1?
BNE DSNOK NO
L R5,FOUR SYS1 IS INVALID. SET RC=4
ST R5,POSITCHK_RETCODE SAVE THE RETURN CODE

DSNOK LR R1,R13 LOAD ROUTINE’S SAVE AREA ADDRESS
L R13,B_PTR CHAIN TO PREVIOUS SAVE AREA
L R5,POSITCHK_RETCODE LOAD THE RETURN CODE
FREEMAIN RU,LV=L_SAVE_AREA,A=(1)

* FREE THE MODULE WORKAREA
L R14,12(R13) HERE’S OUR RETURN ADDRESS
LR R15,R5 HERE’S THE RETURN CODE
LM R0,R12,20(R13) RESTORE REGS 0-12
BSM 0,R14 RETURN TO PARSE
DROP R9
DROP R10
DROP R13

*

* *
* DECLARES FOR CONSTANTS *
* *

*
PCLADCON DC A(PCLDEFS) ADDRESS OF PCL
FOUR DC F’4’ USED TO SET/TEST RETURN CODE
EIGHT DC F’8’ USED TO SET/TEST RETURN CODE
TWELVE DC F’12’ USED TO SET/TEST RETURN CODE
ERROR DC F’12’ USED TO SET/TEST RETURN CODE
SYS1 DC C’SYS1.’ HIGH-LEVEL DESCRIPTOR

Figure 5. A Sample Command Processor (Part 5 of 9)

A Sample Command Processor

Chapter 4. Validating Command Operands 29

* *
* PARSE MACROS USED TO DESCRIBE THE COMMAND OPERANDS *
* *

*
PCLSTART DS 0H
PCLDEFS IKJPARM DSECT=PRDSECT
DSNPCE IKJPOSIT DSNAME, +

PROMPT=’THE NAME OF THE DATA SET YOU WANT TO PROCESS. +
ENTER ’?’’ FOR HELP’, +
HELP=(’A DATA SET NAME WHICH HAS A FIRST-LEVEL QUALIFIER+
OTHER THAN ’SYS1’.’), +

VALIDCK=POSITCHK
ACTPCE IKJKEYWD DEFAULT=’NOACTION’

IKJNAME ’ACTION’
IKJNAME ’NOACTION’
IKJENDP

LPCL EQU *-PCLSTART LENGTH OF THE PCL
*

* *
* DECLARES FOR DYNAMIC VARIABLES *
* *

*
WORK_AREA DSECT
WORKA DS 0F START OF DYNAMIC WORK AREA
WORK_AREA_GM_LENGTH DS F LENGTH OF WORKAREA
WORK_AREA_GM_PTR DS F ADDRESS OF WORKAREA
PPL_LENGTH DS F LENGTH OF PPL
PPL_PTR DS F ADDRESS OF PPL
ANSWER_LENGTH DS F LENGTH OF PPL ANSWER AREA
ANSWER_PTR DS F ADDRESS OF PPL ANSWER AREA
CPPL_PTR DS F ADDRESS OF THE CPPL FROM TMP
RETCODE DS F THE RETURN CODE
PARSE_RETCODE DS F THE RETURN CODE FROM PARSE
POSITCHK_RETCODE DS F THE RETURN CODE FROM THE POSITCHK
* VALIDATION EXIT
ECB DS F CP’S EVENT CONTROL BLOCK
VALCHK_PARAMETER_LIST_PTR DS F POINTER TO THE VALIDITY CHECK
* PARAMETER LIST

Figure 5. A Sample Command Processor (Part 6 of 9)

A Sample Command Processor

30 z/OS V1R4.0 TSO/E Programming Guide

* *
* MAPPING OF THE THREE WORD VALIDITY CHECK PARAMETER LIST. *
* *
* PARSE PASSES THIS PARAMETER LIST TO THE VALIDITY CHECK ROUTINE, *
* POSITCHK. IT CONTAINS THE FOLLOWING INFORMATION: *
* 1) PDEADR - THE ADDRESS OF THE PDE FOR THE DATA SET NAME *
* 2) USERWORD - THE ADDRESS OF THE USER WORK AREA THAT THE *
* COMMAND PROCESSOR SUPPLIED TO PARSE IN THE PPL.*
* 3) VALMSG - THE ADDRESS OF A SECOND-LEVEL MESSAGE. PARSE *
* INITIALIZES THIS FIELD TO X’00’. *
* *

*
VALIDITY_CHECK_PARAMETER_LIST DS 0F THE VALIDITY CHECK PARAMETER
* LIST
PDEADR DS F ADDRESS OF THE PDE FROM PARSE
USERWORD DS F ADDRESS OF THE WORK AREA WE GAVE
* TO PARSE
VALMSG DS F ADDRESS OF A SECOND-LEVEL MESSAGE
* WE CAN GIVE BACK TO PARSE
L_WORK_AREA EQU *-WORK_AREA
* LENGTH OF DYNAMIC WORK AREA
*

* *
* DECLARES FOR THE SAVE AREA *
* *

*
SAVE_AREA DSECT
SAVEAREA DS 0CL72 STANDARD SAVE AREA
PLI_LINK DS F UNUSED
B_PTR DS F BACKWARD SAVE AREA POINTER
F_PTR DS F FORWARD SAVE AREA POINTER
REG14 DS F CONTENTS OF REGISTER 14
REG15 DS F CONTENTS OF REGISTER 15
REG0 DS F CONTENTS OF REGISTER 0
REG1 DS F CONTENTS OF REGISTER 1
REG2 DS F CONTENTS OF REGISTER 2
REG3 DS F CONTENTS OF REGISTER 3
REG4 DS F CONTENTS OF REGISTER 4
REG5 DS F CONTENTS OF REGISTER 5
REG6 DS F CONTENTS OF REGISTER 6
REG7 DS F CONTENTS OF REGISTER 7
REG8 DS F CONTENTS OF REGISTER 8
REG9 DS F CONTENTS OF REGISTER 9
REG10 DS F CONTENTS OF REGISTER 10
REG11 DS F CONTENTS OF REGISTER 11
REG12 DS F CONTENTS OF REGISTER 12
L_SAVE_AREA EQU *-SAVE_AREA
* LENGTH OF SAVE AREA

Figure 5. A Sample Command Processor (Part 7 of 9)

A Sample Command Processor

Chapter 4. Validating Command Operands 31

* *
* MAPPING OF THE PDE BUILT BY PARSE TO DESCRIBE A DSNAME OR DSTHING *
* OPERAND. *
* *

*
DSNAME_DSTHING DSECT PDE MAPPING FOR THE FOR DSNAME
* OR DSTHING
DSNAME_PTR DS F POINTER TO THE DSNAME
DSNAME_LENGTH_1 DS H LENGTH OF THE DATA SET NAME
* EXCLUDING QUOTES
DSNAME_FLAGS1 DS CL1 FLAGS BYTE
*
* 0... THE DATA SET NAME IS NOT PRESENT
* 1... THE DATA SET NAME IS PRESENT
* .0.. THE DATA SET NAME IS NOT CONTAINED WITHIN QUOTES
* .1.. THE DATA SET NAME IS CONTAINED WITHIN QUOTES
*

DS CL1 RESERVED
DSNAME_MEMBER_PTR DS F POINTER TO THE MEMBER NAME
DSNAME_LENGTH_2 DS H LENGTH OF THE MEMBER NAME
* EXCLUDING PARENTHESES
DSNAME_FLAGS2 DS CL1 FLAGS BYTE
*
* 0... THE MEMBER NAME IS NOT PRESENT
* 1... THE MEMBER NAME IS PRESENT
*

DS CL1 RESERVED
DSNAME_PASSWORD_PTR DS F POINTER TO THE DATA SET PASSWORD
DSNAME_LENGTH_3 DS H LENGTH OF THE PASSWORD
DSNAME_FLAGS3 DS CL1 FLAGS BYTE
*
* 0... THE DATA SET PASSWORD IS NOT PRESENT
* 1... THE DATA SET PASSWORD IS PRESENT
*

DS CL1 RESERVED
L_DSNAME_PDE EQU *-DSNAME_PTR
*

* *
* MAPPING OF THE PDE BUILT BY PARSE TO DESCRIBE THE KEYWORD OPERAND *
* *

*
KEYWD_PDE DSECT
KEYWD_NUM DS H CONTAINS THE NUMBER OF THE IKJNAME
* MACRO INSTRUCTION THAT CORRESPONDS
* TO THE OPERAND ENTERED/DEFAULTED
*
L_KEYWD_PDE EQU *-KEYWD_PDE

Figure 5. A Sample Command Processor (Part 8 of 9)

A Sample Command Processor

32 z/OS V1R4.0 TSO/E Programming Guide

*
IKJPPL PARSE PARAMETER LIST

L_PPL EQU *-PPL
*

IKJCPPL COMMAND PROCESSOR PARAMETER LIST
L_CPPL EQU *-CPPL
*
ANSWER DSECT

DS F PARSE ANSWER PLACE. PARSE PLACES A
* POINTER TO THE PDL HERE
L_ANSWER EQU *-ANSWER
*

CVT DSECT=YES CVT MAPPING NEEDED FOR CALLTSSR MACRO
*

* *
* EQUATES *
* *

*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11 BASE REGISTER
R12 EQU 12
R13 EQU 13 DATA REGISTER
R14 EQU 14 RETURN ADDRESS
R15 EQU 15 RETURN CODE
QUOTE EQU X’40’ FULLY-QUALIFIED DATA SET NAME

END PROCESS

Figure 5. A Sample Command Processor (Part 9 of 9)

A Sample Command Processor

Chapter 4. Validating Command Operands 33

A Sample Command Processor

34 z/OS V1R4.0 TSO/E Programming Guide

Chapter 5. Communicating with the Terminal User

Issuing Messages . 35
Message Levels . 35
Using the I/O Service Routines to Handle Messages 36
Using the TSO/E Message Issuer Routine (IKJEFF02) 37
Using Generalized Routines for Issuing Messages 37

Performing Terminal I/O. 37
Changing Your Command Processor’s Source of Input 38
Writing a Full-Screen Command Processor 38

Set Full-Screen Mode On . 39
Give Control to the Command Processor 40
Write to and Get Information from the Terminal 40
Exiting and Reentering Full-Screen Mode 41
Full-Screen Command Processor Termination 42
Examples of Full-Screen Command Processor Operation 42

Your command processor may need to obtain data from the terminal, prompt the
user for input, or write messages or data to the terminal. You may also want to use
the full-screen capabilities of TSO/E to display full-screen panels.

This chapter provides an overview of how to issue messages, perform terminal I/O,
change the source of input, and use the full-screen capabilities of TSO/E in your
command processor. For additional information on the macros and services
discussed in this chapter, see z/OS TSO/E Programming Services.

Issuing Messages
TSO/E supports three classes of messages:

1. Prompting messages begin with “ENTER” or “REENTER”, and require a
response from the user. For example, prompting messages are issued by the
parse service routine when the user has entered an incorrect operand or when
a required operand is missing.

Issue prompting messages from your command processor to obtain data from
the terminal when additional information is required to perform the requested
function.

2. Mode messages inform the terminal user which command is in control and
indicate that the system is waiting for the terminal user to enter a new command
or subcommand. For example, the READY message is a mode message.

If you have chosen to implement subcommands, your command processor
should issue a mode message to inform the terminal user that the system is
waiting for the user to enter a subcommand.

3. Informational messages are issued for information only, and do not require a
response from the user. Issue informational messages to notify the terminal user
of the status of the command being executed. For example, informational
messages should be issued if your command processor encounters an error
and must terminate.

Message Levels
Messages that are issued to a TSO/E user should usually have second-level
messages associated with them. Second-level messages provide additional

© Copyright IBM Corp. 1988, 2002 35

explanation of the initial message. They are displayed only if the user specifically
requests them by entering a question mark (?).

Prompting messages can have any number of second-level messages. However,
informational messages can have only one second-level message associated with
them. Mode messages cannot have second-level messages.

Using the I/O Service Routines to Handle Messages
Your command processor can use the I/O service routines provided by TSO/E to
issue messages and obtain the user’s response.

Use the PUTLINE service routine, which writes a line of data to the terminal, to
display informational messages. Use the PUTGET service routine, which writes a
line of data to the terminal and obtains a line of input in response, to issue
prompting and mode messages.

Both PUTLINE and PUTGET provide support for displaying messages in the user’s
desired language as specified in the user profile table. The MVS message service
must be active to use this support. In addition, a translated version of the message
in the specified language must exist.

You can also use PUTLINE and PUTGET to perform the following functions when
issuing prompting or informational messages:

v Remove message identifiers before issuing the message. This is done if the
terminal user has used the PROFILE command to indicate that message
identifiers are not to be displayed.

v Place inserts into message text.

v Chain second-level messages.

The PUTLINE service routine provides special support for second-level messages
that are associated with an informational message. Because many informational
messages might be displayed at the terminal before the user enters a question
mark, PUTLINE saves them for you. The area in which they are saved exists from
one PUTGET to another. In other words, whenever the user can enter a new
subcommand, the user can enter a question mark instead, requesting all the
second-level messages for informational messages issued during execution of the
previous subcommand. If the user does not enter a question mark, PUTGET
deletes the second-level messages and frees the area they occupy.

Mode messages cannot have second-level messages, because a question mark
entered in response to a mode message is defined as a request for the second
levels of previous informational messages. If your command processor supports
subcommands, you should use the PUTGET service routine to issue all mode
messages so that the second level informational messages are properly handled.

When PUTGET returns a line of data from the terminal, this data is placed in a
buffer that resides in subpool 1 and is owned by your command processor.
Although the buffers returned by PUTGET are automatically freed when your code
relinquishes control, you can use the FREEMAIN macro instruction to free these
buffers.

Issuing Messages

36 z/OS V1R4.0 TSO/E Programming Guide

Using the TSO/E Message Issuer Routine (IKJEFF02)
If your command processor issues messages with numerous inserts, you should
use the TSO/E message issuer service routine (IKJEFF02) instead of PUTLINE and
PUTGET. Using IKJEFF02 has several advantages:

v It simplifies the issuing of messages with inserts because the same parameter
list can be used to issue any message.

v This service makes it convenient to place all messages for a command in a
single CSECT. This is important when you have to modify message texts.

v It provides support for second-level messages that are associated with
informational or prompting messages.

IKJEFF02 also provides support for displaying messages in the user’s desired
language as specified in the user profile table. The MVS message service must be
active to use this support. In addition, a translated version of the message in the
specified language must exist.

Using Generalized Routines for Issuing Messages
If your command processor invokes TSO/E services or system services, you should
issue informational messages to notify the user if error conditions occur.

You can use DAIRFAIL to analyze return codes from dynamic allocation (SVC 99)
and the TSO/E dynamic allocation interface routine (DAIR), and to issue error
messages when appropriate. Use the GNRLFAIL/VSAMFAIL routine to issue error
messages for VSAM macro failures, subsystem request failures, parse service
routine failures, PUTLINE failures, and abend codes.

Performing Terminal I/O
Your command processor may need to write lines of data to the terminal or obtain
data from the terminal. This topic discusses how to perform terminal I/O for data
other than messages, message responses, and subcommand requests.

There are several methods that you can use to perform terminal I/O.

v The BSAM or QSAM macro instructions provide terminal I/O support for
programs that run under TSO/E. For example, you can use the PUT or WRITE
macro instructions to display data at the terminal, and you can use the GET or
READ macro instructions to obtain input from the terminal.

The major benefit of using BSAM or QSAM to process terminal I/O is that these
access methods are not device dependent or TSO/E dependent. Therefore, you
can incorporate code from existing routines that use BSAM or QSAM into your
command processor without having to modify the macro instructions.

v The GETLINE and PUTLINE service routines provide the ability to obtain data
from the terminal and write data to the terminal, respectively. Use the GETLINE
and PUTLINE macro instructions to invoke these I/O service routines.

When GETLINE returns a line of input, this data is placed in a buffer that resides
in subpool 1 and is owned by your command processor. Although the buffers
returned by GETLINE are automatically freed when your code relinquishes
control, you can use the FREEMAIN macro instruction to free these buffers.

Use the PUTLINE macro instruction with the DATA operand to write one or more
lines of data to the terminal.

v The TGET, TPUT, and TPG macro instructions to perform terminal I/O. Your
command processor can use the TPUT macro instruction to write a line of output
to the terminal, and can use the TGET macro instruction to read a line of input.

Issuing Messages

Chapter 5. Communicating with the Terminal User 37

However, the TGET, TPUT and TPG macro instructions are intended only for
terminal I/O. To allow your command processor to be executed in a background
TSO/E session, use the I/O service routines (STACK, GETLINE, PUTLINE and
PUTGET).

Changing Your Command Processor’s Source of Input
TSO/E maintains a pushdown list or stack that determines the source of input.

The top element of the stack indicates the currently active input source. This stack
is initialized by creating the first element, which indicates that the terminal is the
current source of input. Therefore, when your command processor receives control,
the current source of input is the terminal. When you use the GETLINE, PUTLINE
or PUTGET macro instructions, all input is read from the terminal and all output is
written to the terminal.

You may want to obtain input from a source other than the terminal, such as a data
set containing records to be processed. TSO/E also allows an in-storage list to be
used as the source of input. An in-storage list can be either a command procedure
(CLIST) or a source data set. Use the STACK service routine in your command
processor to change the source of input by either adding or removing an element
from the input stack. However, your command processor cannot change or delete
the first element.

Writing a Full-Screen Command Processor
If your command processor needs to display panels, it must be able to issue
full-screen messages to the terminal and obtain input from the user. When your
command processor displays full-screen messages, it must prevent the screen from
being overlaid by non-full-screen messages, such as messages sent by the system
operator or other TSO/E users. A full-screen command processor must also provide
the necessary processing to allow the terminal user to read non-full-screen
messages before they are overlaid by full-screen messages.

Use one of the following methods to write a full-screen command processor:

v If your command processor is to execute in an ISPF environment, use ISPF
services to receive requests and data from a terminal user and give appropriate
responses. For information on using ISPF services, see z/OS ISPF Services
Guide.

v If your command processor is to be used outside of an ISPF environment, or if it
must perform functions not available through ISPF services, use VTAM macros
for full-screen processing.

This topic outlines the steps for writing a full-screen command processor using
VTAM macros, and contains several examples illustrating the processing that
occurs when running a full-screen command processor. You must use the following
macros when writing a full-screen command processor:
STFSMODE Set full-screen mode.
STLINENO Set the line number.
STTMPMD Set terminal display manager options.
TGET Get a line from the terminal.
TPUT Write a line to the terminal.

See z/OS TSO/E Programming Services for a complete description of each of these
macros.

Performing Terminal I/O

38 z/OS V1R4.0 TSO/E Programming Guide

Follow these steps when writing a full-screen command processor (described on the
following pages):

1. Set full-screen mode on (see “Set Full-Screen Mode On”).

2. If replacing a display terminal manager, such as Session Manager, put the
command processor in control (see “Give Control to the Command Processor”
on page 40).

3. Write to and get information from the terminal as necessary (see “Write to and
Get Information from the Terminal” on page 40).

4. Exit and reenter full-screen mode as necessary (see “Exiting and Reentering
Full-Screen Mode” on page 41).

5. Terminate the full-screen command processor and, if it replaced a display
terminal manager, return control to the display terminal manager (see
“Full-Screen Command Processor Termination” on page 42).

Table 5 shows the macros used when writing a full-screen command processor.

Table 5. Macros Used to Write a Full-Screen Command Processor

(1) STFSMODE ON,INITIAL=YES Set full-screen mode on
(2) STTMPMD ON Give control to the command processor
(3) TPUT FULLSCR Issue a full-screen message

TGET ASIS...

Get input from the terminal

(4) STLINENO LINE=1...

Clear the screen and exit full-screen mode
expecting to reenter it later

TPUT EDIT...

Issue a non-full-screen message

STFSMODE ON Reenter full-screen mode
TPUT FULLSCR Issue a full-screen message
TGET ASIS Obtain RESHOW request
TPUT FULLSCR Reissue the previous full-screen message
TGET ASIS...

Get input from the terminal

(5) STLINENO LINE=1 Clear the screen
STFSMODE OFF Exit full-screen mode and set defaults
STTMPMD OFF Return control to the display terminal manager
TPUT EDIT...

Display session summary information

Set Full-Screen Mode On
Use the STFSMODE macro to set full-screen mode on. This macro prevents
unexpected non-full-screen messages from overlaying the screen. For example,
unexpected messages from the operator or from other TSO/E users could cause
incorrect input to be sent to the command processor. Also, STFSMODE prevents
full-screen messages from overlaying unexpected non-full-screen messages before
the user has a chance to read them.

Writing a Full-Screen Command Processor

Chapter 5. Communicating with the Terminal User 39

To prevent unnecessary protection of the screen contents, specify INITIAL=YES
when you use the STFSMODE macro. If you specify INITIAL=YES and the first
message is a full-screen message, TSO/VTAM does not display three asterisks at
the terminal (which would require the user to press the Enter key). TSO/VTAM sets
the INITIAL keyword indicator to NO after the command processor sends the first
full screen of information. For subsequent full screens of output that follow non-full
screens of output, TSO/VTAM displays the three asterisks at the terminal before
processing the full-screen output. For a description of the processing that takes
place when INITIAL=YES and INITIAL=NO, see “Examples of Full-Screen
Command Processor Operation” on page 42.

TERMINAL BREAK Support for Full-Screen Mode
When a command processor establishes full-screen mode, VTAM treats all devices
as if the terminal user had entered the TERMINAL NOBREAK command. If the user
specifies TERMINAL BREAK before a full-screen command processor is invoked,
VTAM supports the BREAK mode before the command processor enters full-screen
mode and whenever the command processor exits from full-screen mode. See z/OS
TSO/E Command Reference for a description of the TERMINAL command.

Give Control to the Command Processor
If your command processor replaces a display terminal manager, such as Session
Manager, use the STTMPMD macro to put the command processor in control. If
you do not use this macro, the display terminal manager traps line-mode messages
so the user does not see them in the ordinary way. If your command processor
does not replace a display terminal manager, you do not need this macro.

Write to and Get Information from the Terminal
Use the TPUT and TGET macros to provide interaction between the user and the
command processor TPUT FULLSCR, TPUT NOEDIT, and TPG transmit a
full-screen of output to the terminal.

Unlocking the Keyboard
When a command processor issues a TGET following a TPUT FULLSCR, VTAM
unlocks the display keyboard. When a command processor issues a TGET following
a TPUT NOEDIT or a TPG, VTAM does not unlock the keyboard. Programs that
use TPUT NOEDIT and TPG are responsible for all device command and
write-control-character bit settings.

Receiving Data
TGET ASIS reads a full screen of input containing the user’s reply from the
terminal. You can also use the NOEDIT keyword on the STFSMODE macro along
with the TGET macro to get a full-screen message from the terminal.

NOEDIT Mode
To obtain a full screen of input (via a TGET macro) that is not edited in any way, the
command processor can specify the NOEDIT keyword on STFSMODE. Regardless
of the options the command processor specifies on the TGET macro, in NOEDIT
mode, VTAM does not edit the data, break it into separate input lines, or modify it.
VTAM receives the input from the terminal and puts it on the input queue intact. To
establish NOEDIT mode, the command processor must issue:
STFSMODE ON,NOEDIT=YES

Use of the NOEDIT keyword has no effect on the treatment of TPUTs and TPGs.

Writing a Full-Screen Command Processor

40 z/OS V1R4.0 TSO/E Programming Guide

Considerations for Invoking an External Function:
Before a command processor calls an external function or system service, it must
check that the full-screen mode and input mode (normal or NOEDIT) are acceptable
to the function or service. For example, if the NOEDIT input mode is in effect when
control passes to an external routine, and the invoked routine does not change the
input mode, TGET returns data in an unedited format.

Protection of Screen Contents
When non-full-screen messages are issued in full-screen mode, TSO/VTAM clears
the screen and sends the non-full-screen messages to the screen. When the next
full-screen message is issued, TSO/VTAM protects the screen contents to allow the
user time to read the non-full-screen messages. TSO/VTAM protects the screen by
displaying three asterisks (***) after the last non-full-screen message and unlocking
the keyboard. When finished reading the screen, the user presses Enter to allow
full-screen processing to resume.

Restoration of Screen Contents
As part of the screen protection function, TSO/VTAM discards the full-screen
message that immediately follows non-full-screen messages, unless issued with the
HOLD option of the TPUT macro. To receive the RESHOW code, the full-screen
command processor must issue a TGET macro after every TPUT FULLSCR macro.

The RESHOW indicator tells the command processor to completely restore the
screen contents. That is, the command processor must reissue the previous
full-screen message. For an example of RESHOW processing, see “Examples of
Full-Screen Command Processor Operation” on page 42.

RESHOW requests can come from VTAM and from terminal users. Terminal users
can request a restoration of the screen by pressing the RESHOW key. The VTAM
default RESHOW code is X'6E', which represents the PA2 key. If the command
processor uses a PF key for the RESHOW key, it must specify the RSHWKEY
keyword on the STFSMODE macro when it first turns on full-screen mode. To set
the RESHOW key, issue:
STFSMODE ON,RSHWKEY=n

where n is the PF key number. VTAM uses the hexadecimal representation of the
specified PF key as the RESHOW code.

Exiting and Reentering Full-Screen Mode
If the command processor issues non-full-screen messages (or invokes routines
that issue non-full-screen messages), it can issue the STLINENO macro to set
full-screen mode off and to set the line number for the next non-full-screen
message. In so doing, the command processor eliminates the screen protection
function and determines where the next non-full-screen message appears. If the
line number is set to 1, VTAM clears the screen. When the command processor
issues the last non-full-screen message (or when the invoked routine returns control
to the command processor), the command processor must issue STFSMODE ON
to reestablish full-screen mode. The command processor must issue the
STFSMODE macro before it issues the next full-screen message macro.

If the command processor exits full-screen mode, expecting to reenter full-screen
mode at a later time before termination, the command processor must use
STLINENO to set full-screen mode off. (Use of STFSMODE to set the mode off
results in the RESHOW key being set to the default.) After a TGET request, the
command processor can issue:
STLINENO LINE=n

Writing a Full-Screen Command Processor

Chapter 5. Communicating with the Terminal User 41

where n is the desired line number. The command processor not have to specify
MODE=OFF on the STLINENO macro because that is the default for the MODE
keyword.

When all non-full-screen messages are completed, issue STFSMODE ON before
issuing the next full-screen message macro. When the command processor returns
to full-screen mode, it must issue the TGET macro to read the RESHOW request in
the input queue. It can then continue to transmit and receive information from the
terminal.

You may want either to clear part of the screen before issuing STLINENO, or to
display information that is to remain on the screen after the STLINENO macro is
issued. In either case, issue a full-screen TPUT or TPG macro (including the HOLD
option) before issuing the STLINENO. The HOLD option specifies that the program
that issued the TPG macro cannot continue its processing until the output line is
written to the terminal or deleted. Therefore, the full-screen message reaches the
terminal before the STLINENO macro takes effect.

Clearing the Terminal Screen
Because VTAM clears the screen when the line number is set to 1, STLINENO
LINE=1 is an efficient way for the command processor to clear the screen. Use of a
full-screen TPUT or TPG macro (including the HOLD option) to clear the screen
reduces performance because it causes a swap-out of the address space to wait for
the I/O to complete.

Full-Screen Command Processor Termination
When a TGET is satisfied with data that causes the command processor to begin
exit processing, the following termination procedure is recommended:

STLINENO LINE=1 Causes VTAM to clear the screen.

STFSMODE OFF Exits full-screen mode and resets the RESHOW
key and NOEDIT mode to the defaults.

STTMPMD OFF Returns control to a display terminal manager, such
as Session Manager.

Non-full-screen TPUTs Optional macros that provide session summary
information or other types of termination
information.

If the command processor issues a TPUT or TPG macro before (or instead of)
issuing the STLINENO macro, it must use the HOLD option to guarantee that the
message reaches the terminal before VTAM sets full-screen mode off. If the macro
is handling a full-screen message, the command processor must issue a TCLEARQ
INPUT macro just before termination to clear the RESHOW code that VTAM put on
the input queue for screen protection.

Examples of Full-Screen Command Processor Operation
Examples on the following pages show these functions:

v RESHOW in full-screen message processing

v INITIAL=YES on the STFSMODE macro when the first message is a full-screen
message

v INITIAL=YES on the STFSMODE macro when the first message is a
non-full-screen message

v INITIAL=NO on the STFSMODE macro

Writing a Full-Screen Command Processor

42 z/OS V1R4.0 TSO/E Programming Guide

Each example consists of a figure followed by an explanation. The heading for each
figure lists the three components involved in the processing: the command
processor, TSO/VTAM, and the terminal. The items listed under each component
relate to that component. The numbers in the left-hand column of the figures refer
to the events described in the explanation. The arrows in the figure indicate the flow
of the processing.

Function of RESHOW in Full-Screen Message Processing
Figure 6 shows the use of RESHOW when a command processor, operating in
full-screen mode, issues a full-screen message while non-full-screen messages are
being displayed at the terminal.

The following events occur in Figure 6:

1. When the user presses the Enter key to send input to the command processor,
TSO/VTAM:

v Clears the screen.

v Sounds the alarm (if the terminal has an alarm).

v Displays non-full-screen messages. The operator or some other user could
have sent these messages.

2. As long as TSO/VTAM receives non-full-screen messages, it displays them, one
after another on the screen.

3. The command processor’s normal processing of input (see step 1) may cause it
to send a full-screen message using the TPUT macro. When TSO/VTAM
receives the full-screen message, it:

v Displays three asterisks (***) at the terminal.

v Unlocks the keyboard to ensure that the user has time to view the
non-full-screen messages.

v Discards the full-screen message that the command processor sent.

4. After each full-screen message, the command processor issues a TGET macro.
When the user presses the Enter key to acknowledge having seen the
non-full-screen messages, TSO/VTAM puts a RESHOW request on the input
queue to tell the command processor to completely restore the screen contents.
The command processor’s current TGET picks up this RESHOW request.

Command Processor TSO/VTAM Terminal

1.

2.

3.

4.

5.

6.

input ENTER

non-full-screen message 1

TPUT
full-screen message 1

TPUT
full-screen message 1 full-screen message 1

TGET

.

.

.
non-full-screen message n

.

.

.
non-full-screen message n

non-full-screen message 1

*** ***

ENTER

TGET

RESHOW

Figure 6. Function of RESHOW in Full-Screen Message Processing

Writing a Full-Screen Command Processor

Chapter 5. Communicating with the Terminal User 43

5. The command processor responds to the RESHOW request by issuing a
full-screen TPUT to restore the screen contents. TSO/VTAM displays the
message at the terminal.

6. The command processor issues a TGET macro.

Function of INITIAL=YES when the First Message is Full Screen
Figure 7 shows a situation in which the command processor specifies INITIAL=YES
on the STFSMODE macro and issues a full-screen message as the first message.

The following events occur in Figure 7:

1. TSO/VTAM displays the READY message at the terminal. In response to the
READY message, the user enters a command name, such as ISPF. The
command processor receives the command name.

2. The command processor issues the STFSMODE macro with INITIAL=YES.

3. The command processor issues a full-screen message to the terminal.
TSO/VTAM sends the message without warning because the command
processor specified INITIAL=YES and because its previous interaction with the
terminal involved input, not output. There is nothing to protect.

4. The command processor issues a TGET macro.

Function of INITIAL=YES when the First Message is
Non-Full-Screen

Example 1: If the command processor specifies INITIAL=YES on the STFSMODE
macro, and the first message is a non-full-screen message, VTAM ignores the
keyword and protects the screen contents. Figure 8 on page 45 shows this situation
when the STFSMODE macro is issued before the non-full-screen message.

Command Processor TSO/VTAM Terminal

1.

2.

3.

4.

READY READY

command name

STFSMODE
INITIAL=YES

TPUT
full-screen message 1 full-screen message 1

TGET

Figure 7. Function of INITIAL=YES when First Message is Full-Screen

Writing a Full-Screen Command Processor

44 z/OS V1R4.0 TSO/E Programming Guide

The following events occur in Figure 8:

1. TSO/VTAM displays the READY message at the terminal. In response to the
READY message, the user enters a command name. The command processor
receives the command name.

2. The command processor issues the STFSMODE macro with INITIAL=YES.

3. TSO/VTAM displays a non-full-screen message. This could be a warning from
the operator or a message from another user.

4. The command processor sends a full-screen message to the terminal.
TSO/VTAM protects the screen contents by sending three asterisks to the
terminal and discarding the full-screen message.

5. After each full-screen message, the command processor issues a TGET macro.
When the user presses the Enter key to acknowledge having seen the
non-full-screen message, TSO/VTAM puts a RESHOW request on the input
queue to tell the command processor to completely restore the screen contents.
The command processor’s current TGET picks up the RESHOW request.

6. The command processor responds to the RESHOW request by issuing a
full-screen message to restore the screen contents. TSO/VTAM displays the
full-screen message at the terminal.

7. The command processor issues a TGET macro.

Example 2: If the command processor specifies INITIAL=YES on the STFSMODE
macro, and the first message is a non-full-screen message, VTAM ignores the
keyword and protects the screen contents. Figure 9 on page 46 shows this situation
when the STFSMODE macro is issued after the non-full-screen message.

Command Processor TSO/VTAM Terminal

1.

2.

3.

4.

5.

6.

7.

non-full-screen message 1

TPUT
full-screen message 1

TPUT
full-screen message 1 full-screen message 1

TGET

non-full-screen message 1

*** ***

RESHOW ENTER

TGET

READY READY

command name

STFSMODE
INITIAL=YES

Figure 8. Function of INITIAL=YES when First Message is Non-Full-Screen, Example 1

Writing a Full-Screen Command Processor

Chapter 5. Communicating with the Terminal User 45

The following events occur in Figure 9:

1. TSO/VTAM displays the READY message at the terminal. In response to the
READY message, the user enters a command name. The command processor
receives the command name.

2. TSO/VTAM displays a non-full-screen message. This could be a warning from
the operator or a message from another user.

3. The command processor issues the STFSMODE macro with INITIAL=YES.

4. The command processor sends a full-screen message to the terminal.
TSO/VTAM protects the screen contents by sending three asterisks to the
terminal and discarding the full-screen message.

5. After each full-screen message, the command processor issues a TGET macro.
When the user presses the Enter key to acknowledge having seen the
non-full-screen message, TSO/VTAM puts a RESHOW request on the input
queue to tell the command processor to completely restore the screen contents.
The command processor’s current TGET picks up the RESHOW request.

6. The command processor responds to the RESHOW request by issuing a
full-screen message to restore the screen contents. TSO/VTAM displays the
full-screen message at the terminal.

7. The command processor issues a TGET macro.

Function of INITIAL=NO
If the command processor specifies INITIAL=NO or INITIAL=NO is the default,
TSO/VTAM protects the screen before displaying the first full-screen message.
Figure 10 on page 47 shows an example of this situation.

Command Processor TSO/VTAM Terminal

1.

2.

3.

4.

5.

6.

7.

TPUT
full-screen message 1

TPUT
full-screen message 1 full-screen message 1

TGET

non-full-screen message 1 non-full-screen message 1

*** ***

RESHOW ENTER

TGET

READY READY

command name

STFSMODE
INITIAL=YES

Figure 9. Function of INITIAL=YES when First Message is Non-Full-Screen, Example 2

Writing a Full-Screen Command Processor

46 z/OS V1R4.0 TSO/E Programming Guide

The following events occur in Figure 10:

1. TSO/VTAM sends a READY message to the terminal. In response to the
READY message, the user enters a command name. The command processor
receives the command name.

2. The command processor issues the STFSMODE macro with INITIAL=NO.

3. The command processor sends a full-screen message to the terminal.
TSO/VTAM protects the screen contents by sending three asterisks to the
screen and discarding the full-screen message that the command processor
sent.

4. After each full-screen message, the command processor issues a TGET macro.
When the user presses the Enter key, TSO/VTAM puts a RESHOW request on
the input queue to tell the command processor to completely restore the screen
contents. The command processor’s current TGET picks up the RESHOW
request.

5. The command processor responds to the RESHOW request by issuing a
full-screen message to restore the screen contents. TSO/VTAM displays the
full-screen message at the terminal.

6. The command processor issues a TGET macro.

Command Processor TSO/VTAM Terminal

1.

2.

3.

4.

5.

6.

TPUT
full-screen message 1

TPUT
full-screen message 1 full-screen message 1

*** ***

TGET
RESHOW ENTER

TGET

READY READY

command name

STFSMODE
INITIAL=NO

Figure 10. Function of INITIAL=NO

Writing a Full-Screen Command Processor

Chapter 5. Communicating with the Terminal User 47

Writing a Full-Screen Command Processor

48 z/OS V1R4.0 TSO/E Programming Guide

Chapter 6. Passing Control to Subcommand Processors

Step 1. Issuing a Mode Message and Retrieving an Input Line 49
Step 2. Validating the Subcommand Name 50
Step 3. Passing Control to the Subcommand Processor 50

Writing a Subcommand Processor 50
Step 4. Releasing the Subcommand Processor 51

If you have chosen to implement subcommands, your command processor must be
able to recognize a subcommand name entered by a terminal user and pass control
to the requested subcommand processor. This chapter outlines the steps you must
follow to support subcommands.

Command scan, the PUTGET service routine and the parse service routine are
discussed in this chapter; see z/OS TSO/E Programming Services for more
information on these services.

To recognize a subcommand name and pass control to the subcommand processor,
follow these steps:

1. Use the PUTGET service routine to issue a mode message and retrieve a line
of input that may contain a subcommand.

2. Use the command scan service routine to determine if the user has entered a
valid subcommand name.

3. Use the ATTACH macro instruction to pass control to the subcommand
processor.

4. Use the DETACH macro instruction to release the subcommand processor
when it has completed.

Step 1. Issuing a Mode Message and Retrieving an Input Line
Use the PUTGET service routine to issue a mode message to the terminal and
return a line of input. A mode message informs the terminal user which command is
in control and lets him know that the system is waiting for him to enter a new
subcommand. For example, the TEST message issued by the TEST command
processor is a mode message.

When PUTGET returns a line of data from the terminal, it places this data in an
input buffer that is owned by your command processor. Figure 11 shows the format
of the input buffer returned by the PUTGET service routine.

The two-byte length field contains the length of the returned input line plus the
length of the four-byte header. The two-byte offset field is always set to zero on
return from the PUTGET service routine.

Length Offset Text

2 Bytes 2 Bytes

Length

Figure 11. Format of the Input Buffer

© Copyright IBM Corp. 1988, 2002 49

Step 2. Validating the Subcommand Name
Use the command scan service routine to determine whether a syntactically valid
subcommand name is present in the input buffer (command buffer). Command scan
searches the input buffer for a subcommand name, checks the syntax of the name,
and updates the offset field in the input buffer. If a valid subcommand name is
found, command scan resets the offset field in the input buffer to the number of text
bytes preceding the first subcommand operand, if any are present. For example, if
the user enters
SUBCMD OPERAND1 OPERAND2

the offset field would be set to 7, the number of bytes that precede OPERAND1 in
the input buffer.

Although command scan recognizes comments present in the input buffer, it skips
over them without processing them. Comments, which are indicated by the
delimiters /* and */, are not removed from the input buffer.

When your command processor passes control to command scan, it must pass a
parameter list that contains pointers to control blocks and data areas that are
needed by command scan. Addresses needed to access the input buffer and the
output area filled in by command scan are included in this parameter list.

When command scan returns control to your command processor, check the return
code in register 15. If the return code is zero, check the flag field in the output area
to determine whether a syntactically valid subcommand name is present. Use the
pointer to the subcommand name and the length of the name returned in the output
area when you pass control to the appropriate subcommand processor.

Step 3. Passing Control to the Subcommand Processor
After determining that the user has entered a valid subcommand name, use the
ATTACH macro instruction to pass control to the requested subcommand processor.

You should code your ATTACH macro to specify that subpool 78 is to be shared
with lower-level tasks.

Depending upon the function and complexity of the command processor and the
subcommand processor, you may need to specify the ESTAI operand on the
ATTACH macro to provide an error handling routine that receives control if the
subcommand processor abnormally terminates. For information on error handling,
see Chapter 7, “Processing Abnormal Terminations” on page 53. For information on
the ATTACH macro instruction, see z/OS MVS Programming: Authorized Assembler
Services Reference ALE-DYN.

Subcommand processors are similar to command processors in many ways,
including syntax and the way they receive control. When your command processor
attaches the subcommand processor, you should pass a pointer to a command
processor parameter list.

Writing a Subcommand Processor
When you write a subcommand processor, it is suggested that you follow steps that
are similar to the steps you followed to write your command processor. This
procedure is listed below:

1. Access the command processor parameter list (CPPL).

Step 2. Validating the Subcommand Name

50 z/OS V1R4.0 TSO/E Programming Guide

2. Validate any operands entered with the subcommand using the parse service
routine.

3. Communicate with the user at the terminal.

4. Perform the function of the subcommand according to any operands the user
specified.

5. Intercept and process abnormal terminations.

6. Respond to and process attention interruptions entered from the terminal.

7. Set the return code in register 15 and return to the command processor.

These steps are discussed in more detail in Chapter 3, “Writing a Command
Processor” on page 19.

Step 4. Releasing the Subcommand Processor
When the subcommand processor has completed processing and returned control
to your command processor, use the DETACH macro instruction to release it. For
information on the DETACH macro instruction, see z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN.

Step 3. Passing Control to the Subcommand Processor

Chapter 6. Passing Control to Subcommand Processors 51

Step 4. Releasing the Subcommand Processor

52 z/OS V1R4.0 TSO/E Programming Guide

Chapter 7. Processing Abnormal Terminations

Error Handling Routines . 53
ESTAE and ESTAI Exit Routines 53

When are Error Handling Routines Needed? 53
Guidelines for Writing ESTAE and ESTAI Exit Routines 54

Linkage Considerations . 55

Depending on the function and complexity of your command processor, you may
need to provide error handling routines to process abnormal terminations (abends).
This chapter describes the criteria you should consider to determine whether
special processing is needed for error recovery. It also provides guidelines for
writing error handling routines.

Error Handling Routines
When an abnormal termination occurs, your command processor must be able to
provide sufficient recovery to insure that the error condition does not cause the
abnormal termination of a user’s TSO/E session. Error handling routines give your
command processor the ability to intercept an abend and allow it to clean up,
bypass the problem, and if possible, attempt to retry execution.

A command processor must be able to recognize and respond to two types of
abnormal terminations:

1. The command processor or a program at the same task level, such as
command scan or the parse service routine, is terminating abnormally.

2. An attached subtask, such as a subcommand processor, is terminating
abnormally.

ESTAE and ESTAI Exit Routines
Two types of error handling routines are used in writing command processors:
ESTAE exits and ESTAI exits.

v An ESTAE exit is established by issuing the ESTAE macro instruction. The
function of an ESTAE exit is to intercept abnormal terminations that occur at the
current task level.

v An ESTAI exit processes abnormal terminations that occur at the daughter task
level. ESTAI exits are established by using the ATTACH macro with the ESTAI
operand.

For information on writing ESTAE type exits, see z/OS MVS Programming:
Authorized Assembler Services Guide.

When are Error Handling Routines Needed?
Not all command processors require special error handling. In many cases, the
error handling routine provided by the TMP is sufficient. However, if your command
processor falls into one of the following categories, you should provide an ESTAE
exit routine to handle abnormal terminations at the command processor’s task level:

v Command processors that process subcommands

v Command processors that request system resources that are not freed by abend
or DETACH

© Copyright IBM Corp. 1988, 2002 53

v Command processors that process lists. Recovery processing is necessary to
allow processing of other elements in the list if a failure occurs while processing
one element.

v Command processors that use the STACK service routine to change the source
of input. The error handling routine should issue the STACK macro to clear the
input stack before returning to the TMP. Failure to clear the stack causes CLIST
processing to be handled incorrectly.

In addition, if your command processor attaches subcommands, it should also
provide an ESTAI exit to intercept abnormal terminations at the subcommand
processor’s task level. ESTAE and ESTAI exit routines should be used in such a
way that the command processor gets control if a subcommand abnormally
terminates.

Figure 12 shows the relationship between the command processor, subcommand
processor, and the error handling routines.

Guidelines for Writing ESTAE and ESTAI Exit Routines
When you write ESTAE and ESTAI exit routines, observe the following guidelines:

Command

Processor ABEND

error

ESTAE Exit - For ABEND

at CP TCB level.

ESTAI Exit - For ABEND

at daughter TCB level.

ATTACH

(with ESTAI operand)

ESTAE Exit - For ABEND

at this TCB level.

Figure 12. ABEND, ESTAI, ESTAE Relationship

When are Error Handling Routines Needed?

54 z/OS V1R4.0 TSO/E Programming Guide

1. Issue an ESTAE macro instruction as early in your command processor as
possible. The ESTAE instruction should be issued before the STAX macro
instruction is used to establish an attention exit routine.

2. The error handling exit routine should issue a diagnostic error message of the
form:

1st level { command-name } ENDED DUE TO ERROR+
{ subcommand-name }

2nd level COMPLETION CODE IS xxxx

Obtain the name supplied in the first-level message from the environment
control table (ECT). The code supplied in the second-level message is the
completion code passed to the ESTAE or ESTAI exit from abend. You can use
the GNRLFAIL service routine to issue the diagnostic error message, although it
requires additional storage space (see guideline number 5).

The error handling routine should issue these messages so that the original
cause of abnormal termination is recorded, in case the error handling routine
itself terminates abnormally before diagnosing the error.

When an abend is intercepted, the command processor ESTAE exit routine
must determine whether retry is to be attempted. If so, the exit routine must
issue the diagnostic message and return, indicating by a return code that an
ESTAE retry routine is available. If a retry is not to be attempted, the exit routine
must return, and indicate with a return code that no retry is to be attempted.

3. The ESTAE or ESTAI routine that receives control from abend must perform all
necessary steps to provide system cleanup.

4. The error handling exit routine should attempt to retry program execution when
possible. If the command processor can circumvent or correct the condition that
caused the error, the error handling routine should attempt to retry execution. In
other cases, however, RETRY has no function and the command processor
ESTAE exit should not specify the RETRY option.

5. Storage might not be available when the ESTAE or ESTAI routine receives
control. Any storage the routine requires should be acquired before the routine
receives control, and be passed to it.

Linkage Considerations
Your command processor can issue the ESTAE macro, and the ATTACH macro with
the ESTAI operand, in either 24-bit or 31-bit addressing mode. The ESTAE and
ESTAI exit and recovery routines receive control in the same addressing mode in
which the corresponding macros are issued. When the macros are issued in 31-bit
addressing mode, ESTAE and ESTAI routines can reside above 16 MB in virtual
storage.

Guidelines for Writing ESTAE and ESTAI Exit Routines

Chapter 7. Processing Abnormal Terminations 55

Guidelines for Writing ESTAE and ESTAI Exit Routines

56 z/OS V1R4.0 TSO/E Programming Guide

Chapter 8. Processing Attention Interruptions

Responding to Attention Interruptions. 57
How Attention Interruptions are Processed. 57

Deferring Attention Exits . 59
System Use of STAX DEFER=YES 59

Writing Attention Handling Routines 60
Parameters Received by Attention Handling Routines. 61
Full-Screen Protection Responsibilities of Attention Exit Routines 63

This chapter describes how TSO/E processes attention interruptions, and what you
must do to provide an attention exit. Use the STAX service routine to specify and
cancel attention exits, and defer the dispatching of attention exits. After reading this
chapter, you should see z/OS TSO/E Programming Services for information on the
STAX service routine.

If your command processor accepts subcommands or operates in full-screen mode,
you should provide an attention handling routine to receive control when a user
enters an attention interruption from the terminal.

If your command processor does not establish its own attention exit, the TMP’s
attention exit receives control when a terminal user enters an attention interruption
while the command processor is executing. Therefore, simple command processors
should not establish an attention handling routine unless the routine provided by the
TMP cannot process an attention interruption adequately.

Responding to Attention Interruptions
TSO/E interprets an attention interruption as a signal that the user wants to halt
current program execution, possibly to request a new command or subcommand. If
your command processor accepts subcommands, you must provide an attention
handling routine to obtain a line of input from the terminal and respond to that input.

Use the STAX service routine to create the control blocks and queues necessary for
the system to recognize and schedule installation exits that receive control as a
result of attention interruptions. Your command processor provides the address of
an attention exit to the STAX service routine by issuing the STAX macro instruction.

Use the STAX service routine to respond to an attention interruption that occurs
during the processing of a CLIST that contains a CLIST attention exit. To establish
an attention exit, issue the STAX macro with the CLSTATTN=YES and
IGNORE=YES operands. This allows your attention exit to receive control and
enables it to invoke the CLIST attention facility. The CLIST attention facility is a
program and a recovery routine that any program can call to process a CLIST
attention exit. For information on the CLIST attention facility, see z/OS TSO/E
Programming Services.

How Attention Interruptions are Processed
An attention interruption is a way that a terminal user can interrupt the current
processing that the system is performing. Two examples when a user wants to
interrupt the current processing are:

v When a user specifies a command to the system but does not supply all required
information, the command prompts the user for more information. At this point,

© Copyright IBM Corp. 1988, 2002 57

the user can enter the required input or press the attention interrupt key. When
the user presses the attention interrupt key, the system displays a “|” message
(attention accepted) and immediately terminates the processing of the command.

v When a REXX exec has starting executing but before its completion, the user
may decide to enter interactive debug mode and start tracing the REXX exec. In
this case, the system displays a “|” message and the message ENTER HI TO END,
A NULL LINE TO CONTINUE, OR AN IMMEDIATE COMMAND.+. In response, the user
can enter REXX commands such as HI (halt interpretation), TS (trace start), or TE
(trace end).

In both these cases, the system takes the appropriate action via an attention exit.

In an application program, you can indicate that you want to be notified when an
attention interruption occurs to provide your own appropriate action in an attention
exit. To do so, you issue the STAX macro instruction.

When you issue STAX, your request is queued, which means that your attention
routine can get control along with the other previously identified attention routines in
the system.

Remember that when the user presses the attention interrupt key and your exit gets
control, it is possible that the user could press the attention interrupt key again. In
this case, the system (by default) gives control to the next higher-level attention
exit. This happens as long as the user continues to press the attention interrupt key
and attention exits are identified to the system. When all attention exits have been
exhausted, the user sees a |I message.

Similarly, you can invoke a program that in turn issues the STAX macro. In this
case when the user presses the attention interrupt key, your attention exit only gets
control when the user presses the attention interrupt key a second time.

Your application program has no control over lower-level (future) attention exits
getting control. That is, you cannot inhibit an application program from issuing the
STAX macro and processing attention interruptions before you get control. However,
you can inhibit higher-level (previous) attention exits from getting control. To do so,
you specify the TOPLEVEL=YES operand on the STAX macro. When you code
TOPLEVEL=YES and the user presses the attention interrupt key while your exit is
in control, the system displays the “|” message each time that the user presses the
attention interrupt key, but it does not give control to a higher-level attention routine;
your attention exit remains in control.

The preceding time-oriented view is only part of the order which the system uses to
give control to attention exits. Actually, the current MVS task structure plays a part
in the order in which attention routines get control. Normally, you need not be
concerned with this, unless your application program attaches one or more
subtasks that also issue the STAX macro. In this case, the following rules apply:

1. When you attach a subtask that issues the STAX macro, the attention exit that
the subtask establishes gets control before your attention exit, regardless of the
order in which your task and the subtask established the attention exits.

This rule applies when you attach more than one subtask. The attention exit(s)
for each of the subtasks receive control before your attention exit at the higher
task.

2. When you attach more than one subtask, the time-oriented view takes effect for
the order in which each of the subtasks’ attention exits receive control.

How Attention Interruptions are Processed

58 z/OS V1R4.0 TSO/E Programming Guide

Note that the system uses the order in which each subtask issues the STAX
macro, not the order in which you attach the subtasks, to control the order in
which it gives control to attention exits. This means that you need to
synchronize the order that your subtasks issue the STAX macro to guarantee
consistency each time that you attach multiple subtasks.

Some other considerations to remember, when establishing attention exits:

v You can establish more than one attention exit for a task. In this case, the
time-oriented rule is used to give control to attention exits.

v To cancel the most recent attention exit at the current task level prior to task
termination, you can issue the STAX macro without any operands.

v When a task terminates, either normally or abnormally, any attention exits that it
established are removed from the system.

v When an attention exit terminates normally, control can be returned to the point
of interruption. In this case, TGET, TPUT, and TPG buffers (except TPUT ASID
buffers for TCAM) are flushed. If the program attempts to continue processing
from the point of interruption, data in these buffers (an input or output record or
an output message from the system) is lost.

v Depending on how many attention interrupts are being processed by the system,
your attention request may be ignored by the system. In this situation, the system
will send a “|A” to your terminal to indicate that your request will be ignored. You
may wait a few seconds and retry your request; but do not press the attention
key over and over again.

Deferring Attention Exits
After you have established an attention exit to the system via the STAX macro, it
may become necessary for you to postpone the processing of an attention
interruption until some processing completes. For example, you want to invoke a
routine, and you do not want that routine interrupted by the user pressing the
attention interrupt key. The STAX DEFER=YES operand gives you this ability. When
you invoke STAX with the DEFER=YES operand, you in effect postpone any
attention exits for the current task and any higher-level tasks.

After you invoke the STAX DEFER=NO operand, any attention interruption that is
pending will be processed. That is, your previously identified attention exit will
receive control.

System Use of STAX DEFER=YES
When the user presses the attention interrupt key, the system gives control to your
attention exit at the task level at which the attention exit was established. However,
before your attention exit gets control, the system will stop (make non-dispatchable)
any of that task’s subtasks. The only exception to this rule is if a system routine
(that is, an SVRB) is currently running on any of the subtasks and did not specify a
STAX DEFER=NO. In this case, the system defers the attention interrupt until the
system routine completes or issues STAX DEFER=YES.

When your attention exit return control to the system, the system will start (make
dispatchable) all of the subtasks under the task at which the attention exit executed.

If, for any reason, your attention exit requires one of the subtasks to be restarted, it
is the responsibility of the attention exit to restart the task using the status start
facility. Similarly, if the attention exit requires that the subtasks not be restarted on

How Attention Interruptions are Processed

Chapter 8. Processing Attention Interruptions 59

|
|
|
|
|

completion of the attention exit, it is the responsibility of the attention exit to use the
status stop facility to ensure that the subtasks will not become dispatchable when
the attention exit completes processing.

Note: When the system stops tasks within a tree structure, they will be stopped in
an indeterminate order when any are deferring attention exits. As a result,
care must be taken to control intertask dependencies and dependencies on
scheduling attention exits. Failure to do so can result in an intertask
deadlock that can only be relieved by canceling the TSO/E user.

Writing Attention Handling Routines
Use the STAX service routine in your command processor to provide the address of
an attention exit routine that receives control when an attention interruption occurs.

When your attention exit routine receives control, you must issue a mode message
to the terminal indicating the name of the program that was interrupted. You must
then allow the user to enter a line of input. Use one of the following methods to
accomplish this:

v Omit the IBUF or the OBUF operand from the STAX macro instruction that sets
up the attention handling exit. Instead, use the PUTGET macro instruction,
specifying the TERM operand, to send a mode message to the terminal
identifying the program that was interrupted, and to obtain a line of input from the
terminal.

v Specify the OBUF operand on the STAX macro instruction without an IBUF
operand, or with an IBUF length of 0. The OBUF operand specifies the address
of a buffer containing the text of the mode message to be issued to the terminal
user who entered the attention interruption. Then issue the PUTGET macro
instruction, specifying the ATTN operand. Use the ATTN operand to cause the
PUTGET service routine to inhibit the writing of the mode message, because a
message was already written to the terminal from the output buffer specified in
the STAX macro instruction. The PUTGET service routine merely returns a
logical line of input from the terminal.

In either of the above cases, if the user enters a question mark, the PUTGET
service routine automatically causes the second level informational message chain
(if one exists) to be written to the terminal, puts out the mode message again, and
returns a line from the terminal.

Note: If you use the IBUF operand on the STAX macro instruction, no logical line
processing or question mark processing is performed. If the user returns a
question mark, you will have to use the PUTLINE macro instruction to write
the second level informational message chain to the terminal. Then issue a
PUTGET macro instruction, specifying the TERM operand, to write a mode
message to the terminal and to return a line of input from the terminal.

Whether you use the IBUF operand on the STAX macro instruction or the PUTGET
macro instruction to return a line from the terminal, you can use the command scan
service routine to examine what the user has entered. Use command scan to
determine that the line of input is syntactically correct in the input buffer returned by
the PUTGET service routine, or in the attention input buffer (pointed to by the
second word of the attention exit parameter list).

If the user enters a null line, the attention handling routine should return to the point
of interruption. Note that, with the exception of the TPUT ASID buffers for TCAM,

How Attention Interruptions are Processed

60 z/OS V1R4.0 TSO/E Programming Guide

the TGET, TPG, and TPUT buffers are flushed during attention interruption
processing. If any data was present in these buffers, it is lost.

If a new command or subcommand is entered, your attention handling routine must:

v Pass the input line to the mainline command processor for processing.

v Post the command processor’s event control block to cause active service
routines to return to the command processor.

v Exit.

If your command processor must reset the input stack, do so in the command
processor mainline. A stack flush in an attention routine may cause severe errors.

Parameters Received by Attention Handling Routines
The parameter structure received by your attention exit routine is shown in
Figure 13 on page 62.

Writing Attention Handling Routines

Chapter 8. Processing Attention Interruptions 61

When your attention handling routine receives control, the general registers contain
the following information:
Register 0 Irrelevant
Register 1 The address of the attention exit parameter list
Registers 2–12 Irrelevant
Register 13 Save area address
Register 14 Return address
Register 15 Entry point address of the attention handling routine

The attention exit parameter list pointed to by register 1 contains the address of a
terminal attention interruption element (TAIE).

Attention Exit Routine

Register 1

Attention Exit

Parameter List

Terminal Attention

Interrupt Element

Entry from the STAX service routine

Figure 13. Parameters Passed to the Attention Exit Routine

Writing Attention Handling Routines

62 z/OS V1R4.0 TSO/E Programming Guide

The Attention Exit Parameter List
Table 6 shows the format of the attention exit parameter list.

Table 6. The Attention Exit Parameter List

Number of
Bytes

Field Name Contents or Meaning

4 The address of the terminal attention interrupt element (TAIE)
4 The address of the input buffer you specified as the IBUF

operand of the STAX macro instruction. This field is zero if you
did not include the IBUF operand in the STAX macro instruction.

4 The address of the user parameter information you specified as
the USADDR operand of the STAX macro instruction. This field
is zero if you did not include the USADDR operand in the STAX
macro instruction.

The Terminal Attention Interrupt Element (TAIE)
The first word of the attention exit parameter list contains the address of an
eighteen-word terminal attention interrupt element (TAIE). Table 7 shows the format
of the TAIE. Use the IKJTAIE macro, which is provided in SYS1.MACLIB, to map
the TAIE.

Table 7. The Terminal Attention Interrupt Element

Number of
Bytes

Field Name Contents or Meaning

2 TAIEMSGL The length in bytes of the message placed into the input buffer
you specified as the IBUF operand on the STAX macro
instruction. This field is zero if you did not code the IBUF
operand in the STAX macro instruction.

1 TAIETGET The return code from the TGET macro instruction issued to get
the input line from the terminal.

1 TAIEATTN The terminal attention interrupt element flag that indicates
whether the stack contains a CLIST attention exit. When this
field is non-zero, a CLIST with an attention exit is in the stack.

4 TAIEIAD The interruption address, which is the right half of the
interrupted PSW. This is the address at which the program (or a
previous attention exit) was interrupted.

64 TAIERSAV The contents of general registers, in the order 0–15, of the
interrupted program.

Full-Screen Protection Responsibilities of Attention Exit Routines
If you are writing a full-screen mode command processor, you should provide an
attention exit routine to maintain screen protection when the user presses the PA1
or attention key. When the terminal user presses the PA1 or attention key, VTAM
sets FULLSCR to OFF, the RESHOW key to the default, and NOEDIT mode to NO.
If the command processor does not have an attention exit and the user presses the
Enter key (in response to the attention indication), the command processor resumes
execution at the point of interruption with these default values. If the command
processor has an attention exit routine, the exit routine must issue the STFSMODE
macro to reestablish full-screen mode, the desired RESHOW key, and NOEDIT
mode. In this way, the attention exit routine maintains screen protection.

Writing Attention Handling Routines

Chapter 8. Processing Attention Interruptions 63

Writing Attention Handling Routines

64 z/OS V1R4.0 TSO/E Programming Guide

Chapter 9. Creating HELP Information

Writing HELP Members . 66
Format of HELP Members. 66
The Prompt Mode HELP Function 68

An Example of a HELP Member 69

If you write a command processor and make the command available to other users,
you should also provide help information for the command. The help information
you provide should include information about the command’s function, syntax,
operands, and messages. If the command processor has subcommands, the help
information should also include a description of the subcommands and their
operands.

You provide help information in a help data set. A help data set is a cataloged,
partitioned data set consisting of individual members that contain help information
for the commands. Each member contains help information for one command and
its subcommands. The name of the member is the name of the command itself. For
example, if you write a command processor named PRTDATA, you provide help
information in the member named PRTDATA. The members of a help data set
contain fixed-length 80-character records.

You can provide help information in the SYS1.HELP data set or in a data set that
you or your installation creates. TSO/E provides the SYS1.HELP data set that
contains help information for TSO/E commands and subcommands. You must be
authorized to update SYS1.HELP.

If you use your own help data set rather than SYS1.HELP, you must define the data
set to the system. You can concatenate your help data set to the SYS1.HELP data
set or concatenate SYS1.HELP to your data set. Allocate the data sets to the
system file SYSHELP. You can allocate the data sets either in a logon procedure or
using the ALLOCATE command. For example, if your help data set is called
MYCOMMS.HELPCOM, you can use the ALLOCATE command as follows:
ALLOCATE FILE(SYSHELP) DA(’SYS1.HELP’ MYCOMMS.HELPCOM) SHR REUSE

The help data sets that you concatenate to the SYS1.HELP data set do not have to
have the same attributes as SYS1.HELP. However, the first concatenated data set
must have the largest block size of the data sets and must specify a fixed block
size.

You can also define your help data set using the IKJTSOxx member of
SYS1.PARMLIB. In SYS1.PARMLIB, you use the HELP statement to define the help
data sets for your installation. You must be authorized to update the IKJTSOxx
member of SYS1.PARMLIB. Using SYS1.PARMLIB to define your help data sets is
beneficial because you can then use the TSO/E PARMLIB command to dynamically
list and change the HELP PARMLIB statement. For information about specifying
help data sets using SYS1.PARMLIB, see z/OS TSO/E Customization.

One advantage of using the SYS1.HELP data set is that the system need only
search one data set for help information. An advantage of using your own help data
set is that you avoid the possibility of overlaying your help information when you
install a new release of TSO/E.

© Copyright IBM Corp. 1988, 2002 65

In deciding how to provide help information, consider how the HELP command
locates the information. When a user issues the HELP command to obtain help for
a command or subcommand, HELP locates the information as follows:

v If the SYSHELP file is allocated when the user issues the HELP command,
HELP searches only the data sets that are allocated to SYSHELP.

v If the SYSHELP file has not been allocated, HELP searches the data sets
defined on the HELP statement in the IKJTSOxx member of SYS1.PARMLIB.
Note that SYS1.PARMLIB is used only if no data sets have been allocated to the
SYSHELP file.

v If HELP cannot locate the requested help information in the previous two
situations, HELP searches the SYS1.HELP data set, if the data set has not
already been searched.

One of the members in SYS1.HELP is the COMMANDS member. The COMMANDS
member contains a list of the commands users can use and a brief description of
each command. If you issue the HELP command without any operands, HELP
displays the list of commands and their descriptions that are in the COMMANDS
member.

If you provide help information for your own command processor, you may also
want to add your command to the list of commands. To do this, you can simply add
your information to the COMMANDS member. You can also place the information
about your commands in a separate member of SYS1.HELP and include that
member from the COMMANDS member. In the COMMANDS member, add the
statement
)I member

where member is the name of the member containing your list of commands and
command descriptions. An advantage of using your own member and including the
member from COMMANDS is that you avoid the possibility of overlaying your
information when you install a new release of TSO/E.

Writing HELP Members
If you choose to add HELP information to SYS1.HELP, use the IEBUPDTE utility
program or the TSO/E EDIT command to update SYS1.HELP. SYS1.HELP is a
system data set, so it will generally require operator intervention when it is updated.

To add a new member, MBRNAME, to a data set named PRIVATE.HELP using the
EDIT command, enter:
edit ’private.help(mbrname)’ data new

Format of HELP Members
Each of the HELP members, other than the COMMANDS member, contains the
following categories of information, each of which can be displayed at the terminal:

Table 8. Categories of Information in HELP Members

Type of Information Purpose

Subcommand list Lists the names of subcommands. This appears only if the
command has subcommands.

Functional description Provides a brief description of the function of the command
or subcommand.

Syntax Describes the syntax of the command or subcommand.

Creating HELP Information

66 z/OS V1R4.0 TSO/E Programming Guide

Table 8. Categories of Information in HELP Members (continued)

Type of Information Purpose

Message identifier description Provides information pertaining to messages issued by the
command or its subcommands.

Operand description Provides information on the command operands. It includes
individual sections containing brief descriptions of each
positional operand, and of each keyword and its subfield
operands.

Use the information described in Table 9 when you add to SYS1.HELP or set up
your own HELP data set. The control characters, beginning in column 1, divide the
data set into the categories described in Table 8 on page 66. These control
characters allow the HELP command processor to display text according to the
operands supplied on the HELP command. Each HELP data set member should
contain at least the)F,)X, and)O control characters.

Table 9. Format of a HELP Data Set Member

Control Character Purpose of Statement

)S Indicates that a list of commands or subcommands follows.

)F Indicates that the functional discussion of the command or
subcommand follows.

)X Indicates that the syntax description of the command or
subcommand follows.

)M Indicates that message ID information follows. The
information is only printed by the HELP command when the
MSGID keyword is specified.

)I membername This statement includes additional HELP information in the
specified member. The include control character,)I, can
appear anywhere within a data set member. If the HELP
information you plan to add is not available yet, you can
specify the control character and later add the information.
No error messages are issued.

The member name can be up to eight characters long.
There must be at least one blank before and after the
member name.

))messageid Indicates that information follows describing the named
messageid. One of these control statements should be
present for each message issued by the command. Each
statement contains the identifier of the message it
describes. Message IDs can be any length and the first
character must be alphabetic.

)O Indicates that the command operands and their descriptions
follow. Positional operands must follow immediately after the
)O control statement and before the))keyword control
statements.

)P Indicates that a positional operand description follows. One
of these control statements is required for each positional
operand within the command. Each statement contains the
name of the positional operand it describes.

Writing HELP Members

Chapter 9. Creating HELP Information 67

Table 9. Format of a HELP Data Set Member (continued)

Control Character Purpose of Statement

))keyword or keyword with
alias

Indicates that information follows describing the named
keyword. One of these control statements must be present
for each keyword operand within the command. Each
statement contains the name of the keyword it describes.

An example of an alias used with a keyword (taken from the
help member for the ALLOC command is):

))DATASET(’DSNAME(S)’/*)

or

DSNAME(’DSNAME(S)’/*)

which indicates the name of the data set to be allocated.
List of dsnames (with blanks) specifies the data sets are to
be concatenated. The * indicates the terminal to be
allocated.

=subcommandname Indicates that information follows concerning the
subcommand named after the equal sign. One of these
statements is required for each subcommand accepted by
the command being described. This statement merely
names the subcommand; it does not describe it. Describe
the subcommand in the same manner you would describe a
command.

If the subcommand has an alias name, you may include the
alias name on the control statement, in the format
=subcommandname=subcommandalias. No blanks can appear
between the subcommand and the alias.

* Indicates a comment. The data on this statement is not
processed or displayed.

All statements, except the =subcommandname statement, can contain additional
information. If you include additional information on the statements, the control
characters)S,)F,)X,)I, and)O must be followed by at least one blank, and the
control character))keyword must be followed by at least one blank or a left
parenthesis. Any information after the membername field on the include,)I,
statement is treated as a comment. Use the left parenthesis when the keyword you
are describing is followed by operands enclosed in parentheses.

The only restrictions on statements are that columns 72-80 are reserved for
sequence numbers, and column one must contain a right parenthesis, an equal
sign, an asterisk, or a blank. The sequence numbers are not printed when the
HELP command is executed.

The Prompt Mode HELP Function
The prompt mode HELP function, which is described in “Using the Prompt Mode
HELP Function” on page 23, provides the user of your command processor with
information from the HELP data set when the parse service routine has issued
prompt mode messages.

If you want the prompt mode HELP function to be available for your command
processor and its subcommands, you must enter the positional parameter control

Writing HELP Members

68 z/OS V1R4.0 TSO/E Programming Guide

character,)P, on the first line of each positional parameter description for the
command and its subcommand(s) in the HELP member.

If you do not provide a description for a positional parameter, supply the name of
the positional parameter along with the information you want displayed when the
user requests information about the parameter. If a description exists, modify it so
that is does not repeat information provided by the messages. This also applies to
the other descriptions in the HELP members.

Note: If you insert a)P for only some of the positional parameters for a command
or subcommand, unpredictable results may occur when parse processing
issues a HELP command for one of its positional parameters.

An Example of a HELP Member
This topic describes how a fictitious command, SAMPLE, whose syntax is described
in Figure 14, is formatted for entry into the HELP data set or your own private HELP
data set.

The SAMPLE command has one subcommand, the EXAMPLE subcommand,
whose syntax is shown in Figure 15. Both the command and the subcommand can
issue messages IKJXX110I and IKJXX111I.

Figure 16 shows the statements that present and format information about the
SAMPLE command and EXAMPLE subcommand.

SAMPLE posit1 [,(posit2)][KEYWD1(posit3,posit4)]

Figure 14. Syntax of the SAMPLE Command

[KEYWD10]
EXAMPLE posit10,posit11 [KEYWD11] [KEYWD13(posit12)]

[KEYWD12]

Figure 15. Syntax of the EXAMPLE Subcommand

Writing HELP Members

Chapter 9. Creating HELP Information 69

)S The SAMPLE command has the following subcommands: EXAMPLE
)F Functional description of the SAMPLE command:

The SAMPLE command is a fictitious command;
No command processor exists with this name.

The SAMPLE command is used merely to describe the
functions of the HELP data set control statements.

)X The SAMPLE command has the following syntax:
Describe the syntax of the SAMPLE command here.

)I MBRNAME Include additional syntax information for the SAMPLE
command from the indicated HELP member.

)M The SAMPLE command issues the following messages:
))IKJXX1101 Describe the message IKJXX1101 here.
))IKJXX1111 Describe the message IKJXX1111 here.
)O The SAMPLE command has the following positional operands:
)P POSIT1 Describe it here.
)P POSIT2 Describe it here.
))KEYWD1 Describe the keyword, KEYWD1 here; include a description of

POSIT3 and
POSIT4

=EXAMPLE
)F Functional description of the EXAMPLE subcommand:

The EXAMPLE subcommand is a fictitious subcommand.
)X The EXAMPLE subcommand has the following syntax:

Describe the syntax of the EXAMPLE subcommand here.
)O The EXAMPLE subcommand has the following positional operands:
)P POSIT10 Describe it here.
)P POSIT11 Describe it here.
))KEYWD10 Describe the keyword, KEYWD10 here.
))KEYWD11 Describe the keyword, KEYWD11 here.
))KEYWD12 Describe the keyword, KEYWD12 here.
))KEYWD13 (POSIT12)

Describe the keyword, KEYWD13, and the positional
operand, POSIT12, here.

Figure 16. Example of a HELP Member for the SAMPLE Command and EXAMPLE
Subcommand

70 z/OS V1R4.0 TSO/E Programming Guide

Chapter 10. Installing a Command Processor

Using a Private Step Library . 71
Placing Your Command Processor in SYS1.CMDLIB 71
Creating Your Own Command Library 71

After you have completed writing your command processor, you must install it in a
way that makes the command available for you, and possibly other users, to
execute. This chapter describes the methods that you can use to add your new
command processor to TSO/E.

As part of the installation process, use the linkage editor to convert the object
modules that result from assembling your command processor into a load module
that is suitable for execution. The particular data set that contains the load module
is determined by the method that you choose to install your command processor.
These methods are described in the topics that follow.

However, if you choose to postpone installing your command processor until you
have tested it, you can execute it under the control of the TEST command. To
prepare to test your command processor, link-edit the object modules that result
from assembling your command processor into a partitioned data set. “Testing a
Command Processor Not Currently Executing” on page 74 describes how to invoke
the TEST command for a command processor.

Using a Private Step Library
If you are an unauthorized user, you can request that a LOGON procedure be
created that defines a private step library on the STEPLIB DD statement. This step
library is a partitioned data set that contains the command. Use the linkage editor to
enter your command processor as a member of the partitioned data set.

If you are an authorized user and you intend to make your command available to a
large number of TSO/E users, this method is not recommended because of the
TSO/E performance degradation that results from the additional search time
required for each command. However, using a STEPLIB is advantageous if you
want to make your command available to only selected TSO/E users. It is also a
useful method to temporarily install your command processor while you are testing
and refining your code.

Placing Your Command Processor in SYS1.CMDLIB
If you are an authorized user, you can use the linkage editor to enter your
command processor as a member of the partitioned data set SYS1.CMDLIB.
Placing your command processor in SYS1.CMDLIB makes it available to all TSO/E
users.

Creating Your Own Command Library
If you are an authorized user, you can create your own command library and
concatenate it to the SYS1.CMDLIB data set. To do this, create new statements in
the link list (LNKLST00 or LNKLSTxx) in SYS1.PARMLIB. Use the linkage editor to
enter your command processor as a member of the command library. This method
makes your command available to all TSO/E users.

© Copyright IBM Corp. 1988, 2002 71

For information about creating new statements in the link list, see z/OS MVS
Initialization and Tuning Reference.

Creating Your Own Command Library

72 z/OS V1R4.0 TSO/E Programming Guide

Chapter 11. Executing and Testing a Command Processor

Executing a Command Processor 73
Testing an Unauthorized Command Processor 73

Testing a Command Processor That is Terminating Abnormally 73
Testing a Command Processor Not Currently Executing 74

Testing an Authorized Command Processor 74

After you have installed your command processor, you are ready to execute it. If
you encounter errors or abnormal terminations while an unauthorized command
processor is executing, use the TSO/E TEST command to help determine the
reasons for the failures. Use the TSO/E TESTAUTH command to test authorized
command processors.

This chapter describes how to execute your command processor and how to invoke
the TEST and TESTAUTH commands for a command processor. This chapter only
introduces the TEST and TESTAUTH commands; if you are not familiar with the
functions and subcommands that they support, see Chapter 16, “Testing a Program”
on page 97.

Executing a Command Processor
To execute your command processor, enter the command name followed by the
operands that are needed for the function you want performed.

For example, suppose you have written a command called CONVERT, which
converts data records from an input data set into another format, places the results
into an output data set, and optionally prints the converted data. Assume also that
you have defined the command syntax as follows:

That is, input-dsname and output-dsname are positional operands and
PRINT/NOPRINT are keyword operands where NOPRINT is the default if neither
PRINT nor NOPRINT are specified.

To convert the records in INPUT.DATA, place the result in OUTPUT.DATA and print
the contents of the output data set, enter the following command:
CONVERT INPUT.DATA OUTPUT.DATA PRINT

Testing an Unauthorized Command Processor
You can use the TSO/E TEST command to test an executing, unauthorized
command processor if it abnormally terminates or produces incorrect results. You
can also use TEST to step through your command processor to verify that it is
executing properly.

Testing a Command Processor That is Terminating Abnormally
If you are executing your command processor, and it has begun to terminate
abnormally, you receive a diagnostic message at the terminal followed by a READY
message. You then have a choice of terminating your program or testing it. If you
issue the TEST command without operands, the TEST command processor

CONVERT input-dsname output-dsname [PRINT]
[NOPRINT]

© Copyright IBM Corp. 1988, 2002 73

receives control and you can use the TEST subcommands to test your program. If
your response is anything but TEST, a question mark (?) or TIME, your command
processor is abnormally terminated.

Testing a Command Processor Not Currently Executing
You can also use the TEST command to execute and test a command processor
that is not currently executing.

Suppose that the load module for the CONVERT command processor described
earlier in this chapter resides in the partitioned data set prefix.LOAD. To test the
command processor, enter:
TEST (CONVERT) CP

Specify the CP keyword on the TEST command to indicate that the program to be
tested is a command processor. The TEST routine creates a command processor
parameter list (CPPL), and places its address into register 1 before loading the
program. If you do not specify the CP keyword, your command processor will fail.

The TEST command prompts you to enter the command and its operands. You
could then enter a command such as:
CONVERT INPUT.DATA OUTPUT.DATA PRINT

When the TEST command processor issues the TEST mode message to the
terminal, you can begin using the TEST subcommands to execute and test your
program. For more information on how to use the TEST command, see Chapter 16,
“Testing a Program” on page 97 and Chapter 17, “A Tutorial Using the TEST
Command” on page 117.

Testing an Authorized Command Processor
You can use the TESTAUTH command to execute and test an authorized command
processor that is not currently executing. Unlike the TEST command, which is used
for unauthorized programs, you cannot use the TESTAUTH command to test a
currently executing program. However, the TEST and TESTAUTH commands are
similar in that they support most of the same operands, subcommands and
functions.

Suppose that the load module for an authorized command processor, called
AUTHCMD, resides in ’SYS1.LINKLIB’. To test the command processor, enter:
TESTAUTH ’SYS1.LINKLIB(AUTHCMD)’ CP

Specify the CP keyword on the TESTAUTH command to indicate that the
authorized program to be tested is a command processor. The TESTAUTH routine
creates a command processor parameter list (CPPL), and places its address into
register 1 before loading the program. If you do not specify the CP keyword, your
command processor will fail.

The TESTAUTH command prompts you to enter the command and its operands.
You could then enter a command such as:
AUTHCMD operand1 operand2

When the TESTAUTH command processor issues the TESTAUTH mode message
to the terminal, you can begin using the TESTAUTH subcommands to execute and
test your program. For more information about the functions and subcommands of
the TESTAUTH command, see Chapter 16, “Testing a Program” on page 97.

Testing an Unauthorized Command Processor

74 z/OS V1R4.0 TSO/E Programming Guide

Part 3. Preparing, Executing and Testing a Program

After you have written a program or source code, the next step is to compile or
assemble it. The compiler or assembler creates listings that help you diagnose
problems in your source statements, and object modules that contain the compiled
or assembled code.

If your program requires data from system libraries or from other programs, you can
use TSO/E to link-edit a number of object modules together to form a load module.

You can use TSO/E to execute a program in the foreground, or to submit the JCL
statements necessary to execute it in the background. A discussion of how to
execute background jobs is provided in z/OS TSO/E User’s Guide.

While you are executing your program, you may encounter errors or abnormal
terminations (abends). To help determine the cause of errors and to monitor the
execution of your program, use the TEST command for unauthorized programs.
Use the TESTAUTH command for authorized programs.

Part 3 of this document contains several chapters that describe how to:
v Compile or assemble source code
v Link object modules together to form load modules
v Load programs into real storage and execute them
v Debug programs and monitor their execution

© Copyright IBM Corp. 1988, 2002 75

76 z/OS V1R4.0 TSO/E Programming Guide

Chapter 12. Overview of Preparing, Executing and Testing a
Program

The following figures show the steps and commands you use when executing a
program. These commands are discussed in subsequent chapters. Table 10
presents the commands you can use when executing a program and shows what
each command accomplishes.

Table 10. Commands Used to Prepare, Execute and Test a Program

Command Compiles Link-
Edits

Loads Begins
Execution

Monitors
Execution

RUN

For use ONLY with certain
program products.

X X X X

ASM, FORT, PLI, COBOL

Command used to compile
or assemble; depends on
programming language
used.

X

LINK

Produces linkage editor
listings to help test and
debug a program.

X

LOADGO X X X

CALL

Program must be in
executable load module form
and must be a member of a
partitioned data set.

X X

TEST

Program must be a
link-edited member of a
partitioned data set, or an
object module in a
sequential or partitioned data
set.

X X X

TESTAUTH

Program must be a
link-edited member of an
APF-authorized library.

X X X

Figure 17 on page 78 shows, in diagram form, the compile, link-edit and execution
of a PLI language program. The commands, highlighted in dark print, are discussed
in later chapters. The modules and listings produced by these commands are
shown in the boxes.

© Copyright IBM Corp. 1988, 2002 77

Figure 18 on page 79 shows what you would see at your terminal when you
execute this program. The commands you enter are in lower case type and the
system responses are in upper case type.

USERID.PROGRAMS.PLI(SAMPLE)
source module

USERID.PROGRAMS.OBJ(SAMPLE)
object module

USERID.PROGRAMS.LOAD(SAMPLE)
load module

Compile PLI PROGRAMS(SAMPLE) SOURCE PRINT
Step

Linkedit LINK PROGRAMS(SAMPLE) PRINT PLIBASE
Step

Execution CALL PROGRAMS(SAMPLE)
Step

USERID.PROGRAMS.LINKLIST(SAMPLE)
linkage editor listing

USERID.PROGRAMS.LIST
compiler listing

Program Executes

Figure 17. Compiling and Link-Editing a Single Program

Overview of Commands

78 z/OS V1R4.0 TSO/E Programming Guide

READY
pli programs(sample) source print
PL/I OPTIMIZER V1 R4.0
OPTIONS SPECIFIED
S;

NO MESSAGES PRODUCED FOR THIS COMPILATION
COMPILE TIME 0.00 MINS SPILL FILE= 0 RECORDS, SIZE 4051
READY
list programs.list
IKJ52827I PROGRAMS.LIST
PL/I OPTIMIZING COMPILER VERSION 1 RELEASE 4.0
OPTIONS SPECIFIED
S;
PL/I OPTIMIZING COMPILER TSOCALL=

SOURCE LISTING
NUMBER
10000 TSOCALL:

PROCEDURE OPTIONS(MAIN);
63500 DECLARE (FILEOUT) FILE;/* PLI OUTPUT FILE */
71000 PUT FILE (FILEOUT) EDIT (’THIS PLI PROGRAM IS EXECUTING’)

(A);
90000 END TSOCALL;
PL/I OPTIMIZING COMPILER TSOCALL:
NO MESSAGES PRODUCED FOR THIS COMPILATION
COMPILE TIME 0.00 MINS SPILL FILE= 0 RECORDS, SIZE 4051

READY
link programs(sample) print plibase

READY
list programs.linklist(sample)
IKJ52827I PROGRAMS.LINKLIST(SAMPLE)

H96-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED TERM
DEFAULT OPTION(S) USED _ SIZE=(262144,49152)

****SAMPLE NOW REPLACED IN DATA SET AMODE 24
RMODE IS 24
AUTHORIZATION CODE IS 0.

READY
alloc f(fileout) dsn(*)
READY
call programs(sample)

THIS PLI PROGRAM IS EXECUTING

READY

Figure 18. Terminal Session Showing Execution of a Single Program

Chapter 12. Overview of Preparing, Executing and Testing a Program 79

80 z/OS V1R4.0 TSO/E Programming Guide

Chapter 13. Compiling and Assembling Programs

ASM Command . 81
COBOL Command . 82
FORT Command . 82
PLI Command . 82
RUN Command . 82

Compiling Source Code Statements 83
Passing Parameters When Compiling 83
Specifying a Subroutine Library When Compiling - the LIB Operand 83
Specifying VSBASIC Compiler Options 83

After you write your source code, you must compile it into object code and place it
in an object module (see Figure 17 on page 78). The command you use to compile
your source code depends on which programming language you are using. The
third, or descriptive qualifier in the source code data set name should identify the
programming language used to help the compiler find and process the data.

There are a number of versions of some compilers. You can usually find information
on how to use your version of a compiler with the compiler code or in its
accompanying reference material. This manual describes the commands used with
several common compilers.

The RUN command, which is designed specifically for use with the program
products listed in Table 11 on page 82, compiles, loads, and executes source
statements. If you cannot use the RUN command, you need the diagnostic
information provided by the other commands, or you need to link your program to
other modules, you must issue separate commands to link-edit your object modules
into load modules, load these modules into main storage, and begin program
execution. These commands, listed in Table 10 on page 77, are described in the
following chapters.

Some commands used to compile or assemble source statements are:
v ASM
v COBOL
v FORT
v PLI

ASM Command
The ASM command is provided as part of the optional TSO ASM Prompter program
product. Use the ASM command to process assembler language data sets and
produce object modules. The prompter requests required information and enables
you to correct your errors at the terminal. See OS/TSO Assembler Prompter User’s
Guide for detailed information on this command.

For information on how to use and invoke the Assembler H compiler to process
your assembler language statements, see Assembler H Version 2 Application
Programming: Language Reference.

© Copyright IBM Corp. 1988, 2002 81

COBOL Command
The COBOL command is provided as part of the optional COBOL Prompter
program product. Use the COBOL command to compile American National
Standard (ANSI) COBOL programs. This command reads and interprets parameters
for the OS Full American National Standard COBOL Version 3 or Version 4 compiler
and prompts you for any information that you have omitted or entered incorrectly. It
also allocates required data sets and passes parameters to the compiler. See IBM
OS (TSO) COBOL Prompter Terminal User’s Guide and Reference for detailed
information on this command.

FORT Command
The FORT command is provided as part of the optional TSO FORTRAN Prompter
program product. Use the FORT command to compile a FORTRAN IV (G1)
program. You will be prompted for any information that you have omitted or entered
incorrectly. The FORT command also allocates required data sets and passes
parameters to the FORTRAN IV (G1) compiler. See IBM System/360 OS (TSO)
Terminal User’s Supplement for FORTRAN IV (G1) for detailed information on this
command.

PLI Command
The PLI command is provided as part of the optional PL/I Optimizing compiler
program product. Use the PLI command to invoke the PL/I Optimizing compiler. The
prompter will allocate required data sets and prompt you for any information that
you have omitted or entered incorrectly, then it will pass control to the compiler. See
OS PL/I Optimizing Compiler: TSO User’s Guide for detailed information on this
command. The program product includes the PL/I Prompter.

RUN Command
Use the RUN command to compile, load, and execute the source statements in the
data set that you are editing. The RUN command is designed specifically for use
with certain program products; it selects and invokes the particular program product
needed to process your source statements. Table 11 shows which program product
is selected to process each type of source statement.

Table 11. Source/Program Product Relationship

SOURCE PROGRAM PRODUCT

ASSEMBLER Assembler F and TSO Assembler Prompter

COBOL OS/VS COBOL Release 2.4 and TSO COBOL Prompter

FORTRAN TSO FORTRAN Prompter and FORTRAN IV (G1)

PL/I PL/I Checkout Compiler or PL/I Optimizing Compiler

VSBASIC VSBASIC

Note: User-defined data set types can be executed under the RUN subcommand of the
EDIT command if a prompter name was defined by the installation. However, the RUN
command does not recognize these same data set types.

Using the RUN command, you can specify:

v Which data set contains the source code or object module you want to process,
and which assembler or compiler you want to use to process your source
statements.

COBOL Command

82 z/OS V1R4.0 TSO/E Programming Guide

v A string of up to 100 characters that is to be passed as parameters to the
program you are running.

v The libraries that contain subroutines your program will use during its execution.

v The options you want to use with a VSBASIC program.

The RUN subcommand of the EDIT command is very similar to the RUN command,
and you may use it similarly to the way you use the RUN command. Before you
use the RUN subcommand, keep in mind:

v Any data sets required by your problem program may be allocated before you
enter EDIT mode or may be allocated using the ALLOCATE subcommand of
EDIT.

v If you wish to enter a value for “parameters”, you should enter this prior to any of
the other keyword operands.

Compiling Source Code Statements
If the data set name follows standard naming conventions, and the descriptive
qualifier is the name of the programming language used, you do not need to specify
a compiler with the RUN command. If the system cannot determine which compiler
to use, you will be prompted for more information. You can, however, specify the
compiler on the RUN command.

For example, to compile the source code statements in member SAMPLE of data
set PROG1.PLI, enter:
RUN PROG1.PLI(SAMPLE)

Passing Parameters When Compiling
To pass parameters to a program, enclose the parameters in single quotes and
specify them after the name of the data set.

For example, to specify 13, FRIDAY, CAT as parameters to pass to program
PROG1, which was written in PLI, enter:
RUN PROG1 ’13 FRIDAY CAT’ PLI

Specifying a Subroutine Library When Compiling - the LIB Operand
If you use subroutines that reside in a library data set, specify the LIB operand with
the name of the library data set enclosed in parentheses.

For example, when running COBOL program PROG1, you need to use library
SUBS.LOAD because it contains the subroutines your program calls:
RUN PROG1 COBOL LIB(SUBS.LOAD)

You can use the LIB operand when using the assembler, FORTRAN, COBOL, and
PLI compilers.

Specifying VSBASIC Compiler Options
When running the VSBASIC compiler, you can use a number of options with the
RUN command. Specify the options you want after the data set’s descriptive
qualifier (in this case, VSBASIC). Following is a list of operands and a description of
each:

LPREC
specifies that long precision arithmetic calculations are required by the
VSBASIC program.

RUN Command

Chapter 13. Compiling and Assembling Programs 83

SPREC
Default specifying that short precision arithmetic calculations are adequate for a
VSBASIC program.

TEST
specifies that testing of a VSBASIC program is to be performed.

NOTEST
Default specifying that the TEST function is not desired with a VSBASIC
program.

STORE
specifies that the VSBASIC compiler is to store an object program.

NOSTORE
Default specifying that the VSBASIC compiler is not to store an object program.

GO
Default specifying that the VSBASIC program is to receive control after
compilation.

NOGO
specifies that the VSBASIC program is not to receive control after compilation.

SIZE(value)
specifies the number of 1000-byte blocks of VSBASIC user area where value is
an integer of one to three digits.

PAUSE
specifies that the VSBASIC compiler is to prompt the terminal user between
program chains, giving the user the chance to change certain compiler options.

NOPAUSE
Default specifying no prompting between program chains.

SOURCE
Default specifying that new VSBASIC source code is to be compiled.

OBJECT
specifies that the data set name entered is a fully-qualified name of an object
data set to be executed by the VSBASIC compiler.

For more information about the RUN command, see z/OS TSO/E Command
Reference.

RUN Command

84 z/OS V1R4.0 TSO/E Programming Guide

Chapter 14. Binding or Link-Editing a Program

LINK Command . 85
Creating a Program Object or Load Module 86
Resolving External References - the LIB Operand 87
Producing Output Listings - the PRINT Operand 87
Creating a Map of the Program Object or Load Module - the MAP Operand 88
Producing a List of All Binder or Linkage Editor Control Statements - the LIST

Operand . 88
Producing a Cross Reference Table - the XREF Operand 88
Producing a Symbol Table - the TEST Operand 88
Sending Error Messages to Your Terminal - the TERM/NOTERM Operand 89

The binder and linkage editor, invoked by the LINK command, provides a great deal
of information to help you test and debug a program. This information includes a
cross-reference table and a map of the module that identifies the location of control
sections, entry points, and addresses. You can specify which of these types of
information you want by including the LIST, MAP, and XREF operands with the
LINK command. You can have this information listed at your terminal or saved in a
data set.

LINK Command
Use the LINK command to invoke the binder or linkage editor service program.
Basically, the binder or linkage editor converts one or more object modules (the
output modules from a compiler or the assembler) into a load module or program
object that is suitable for execution.

You can specify all the binder or linkage editor options explicitly or you can accept
the default values. The default values are satisfactory for most uses. By accepting
the default values, you simplify the use of the LINK command. This chapter does
not describe every operand available with the LINK command. For more information
on the LINK command, see z/OS TSO/E Command Reference.

In some cases, you might want to use the LOADGO command as an alternative to
the LINK command. The LOADGO command may better serve your needs if one of
the following situations exists:

v The module that you want to process has a simple structure. That is, it is self
contained and does not pass control to other modules.

v You do not require the extensive listings produced by the binder or linkage editor.

v You do not want a program object or load module saved in a library.

On the LINK command, you can specify:

v The names of one or more data sets containing your object modules and/or
binder or linkage editor control statements.

v The name of the partitioned data set that will contain the program object or load
module after processing by the binder or linkage editor.

v One or more names of library data sets the binder or linkage editor is to search
to locate object modules referred to by the module being processed; that is, to
resolve external references.

v Whether you want the system to produce binder or linkage editor listings and
place them in a data set you specify or at your terminal.

© Copyright IBM Corp. 1988, 2002 85

v Whether you want the system to produce and include in the PRINT data set:

– A map of the output module consisting of the control sections, the entry
names, and for overlay structures, the segment number.

– A list of all binder or linkage editor control statements.

– A cross-reference table.

v Whether you want the system to place in the output module the symbol tables
created by the assembler and contained in the input modules.

v Whether you want error messages directed to your terminal as well as to the
PRINT data set.

Creating a Program Object or Load Module
To create a program object or load module by binding or link-editing an object
module, issue the LINK command and specify the object module name. If you want
to bind or link more than one object module, issue the LINK command and list the
object modules’ names separated by commas and enclosed in parentheses.

For example, to bind or link-edit sequential data set object modules FIRST.OBJ,
SECOND.OBJ and FIFTH.OBJ, enter:
LINK (FIRST,SECOND,FIFTH)

The specified data sets will be concatenated within the output program object or
load module in the sequence that they are included in the list of data set names. If
there is only a single name in the data set list, parentheses are not required around
the name. To bind or link-edit object modules in members, enclose the member
names in parentheses.

For example, to bind or link members ONE, TWO, and THREE of data set
D00ABC.SAMPLE.OBJ, enter:
LINK (SAMPLE(ONE),SAMPLE(TWO),SAMPLE(THREE))

If the data set name is D00ABC.OBJ, enclose the member names within two pairs
of parentheses, for example:
LINK ((ONE),(TWO),(THREE))

You may substitute an asterisk (*) for a data set name to indicate that you will enter
binder or linkage editor control statements from your terminal. The system prompts
you to enter the control statements, which should begin in column 2. Press the
Enter key after you enter each control statement. Enter a null line to indicate the
end of your control statements.

When you bind or link-edit an object module that is a sequential data set, the binder
or linkage editor generates a load module in a partitioned data set and assigns the
program object or load module the member name TEMPNAME.

To store the output from the LINK command in a data set, use the LOAD operand
with the user-specified qualifier of the data set enclosed in parentheses.

For example, to store the results of the previous example in data set
SALES.LOAD(ONE), enter:
LINK (FIRST,SECOND,FIFTH) LOAD(SALES(ONE))

If you omit the LOAD operand, the system generates a name according to the data
set naming conventions. The default descriptive qualifier for the data set name is
LOAD.

LINK Command

86 z/OS V1R4.0 TSO/E Programming Guide

Resolving External References - the LIB Operand
To have the system search specific library data sets to resolve any external
references in your program, specify the LIB operand, followed by the name of the
library data set(s) enclosed in parentheses.

When you specify more than one name, separate the names by a valid delimiter.

For example, to have the system search library data sets MYLIB, YOURLIB, and
OURLIB to resolve any external references, enter:
LINK SECOND LIB(MYLIB,YOURLIB,OURLIB)

If you specify more than one name, the data sets are concatenated to the file name
of the first data set in the list. For control statements, the first data set in the list
must be preallocated with the ddname or file name SYSLIB before issuing the LINK
command. If you specify more than one name, the data sets concatenated to the
file name of the first data set lose their individual identity. For details on dynamic
concatenation, see z/OS MVS Programming: Authorized Assembler Services Guide.

Producing Output Listings - the PRINT Operand
To have the system produce binder or linkage editor output listings and place them
into a data set, use the PRINT operand with the name of the data set enclosed in
parentheses.

For example, to have the system produce binder or linkage editor listings from
object modules FIRST.OBJ, SECOND.OBJ, and FIFTH.OBJ and place them in data
set PRINT.DATA, enter:
LINK (FIRST,SECOND,FIFTH) PRINT(PRINT.DATA)

To have the system produce binder or linkage editor output listings and display
them at your terminal, use the PRINT operand with an asterisk enclosed in
parentheses.

For example, to have the system produce binder or linkage editor listings from
object modules FIRST.OBJ, SECOND.OBJ, and FIFTH.OBJ and display them at
your terminal, enter:
LINK (FIRST,SECOND,FIFTH) PRINT(*)

When you omit the data set name on the PRINT operand, the data set that is
generated is named according to the data set naming conventions. The default
descriptive qualifier for the data set name is LINKLIST. This is the default value if
you specify the LIST, MAP, or XREF operand. If you want to have the listings
displayed at your terminal, you may substitute an asterisk (*) for the data set name.

To have the system produce no binder or linkage editor output listings, use the
NOPRINT operand.

For example, to have the system not produce binder or linkage editor listings from
object modules FIRST.OBJ, SECOND.OBJ, and FIFTH.OBJ, enter:
LINK (FIRST,SECOND,FIFTH) NOPRINT

NOPRINT causes the MAP, XREF, and LIST options to become not valid. NOPRINT
is the default value if both PRINT and NOPRINT are omitted, and you do not use
the LIST, MAP, or XREF operand.

LINK Command

Chapter 14. Binding or Link-Editing a Program 87

Creating a Map of the Program Object or Load Module - the MAP
Operand

To have the system include a map of the program object or output module use the
MAP and PRINT operands. The program object or output module consists of the
control sections, the entry names, and (for overlay structures) the segment number
in the PRINT data set. NOMAP, specifying that you do not want a map of the
program object or output module, is the default.

For example, to have the system include a map of the output module from object
module SECOND into PRINT data set PRINT.DATA, enter:
LINK SECOND PRINT(PRINT.DATA) MAP

Producing a List of All Binder or Linkage Editor Control Statements -
the LIST Operand

To have the system include a list of all binder or linkage editor control statements
and place them in the PRINT data set, use the PRINT and LIST operands. NOLIST,
which specifies that you do not want a list of all binder or linkage editor control
statements, is the default.

For example, to produce a list of all the binder or linkage editor control statements
from object module SECOND.OBJ, and place them in PRINT data set PRINT.DATA,
enter:
LINK SECOND PRINT(PRINT.DATA) LIST

To produce a list of all the binder or linkage editor control statements from object
module SECOND.OBJ, and place them in data set SECOND.LINKLIST, where
SECOND.OBJ contains both binder or linkage editor control statements and the
object module, enter:
LINK SECOND LIST

Producing a Cross Reference Table - the XREF Operand
To have the system create a cross reference table and place it in the PRINT data
set, use the PRINT and XREF operands. The cross reference table includes the
module map and a list of all address constants referring to other control sections.
Because the XREF operand includes a module map, both XREF and MAP cannot
be specified for a particular LINK command. NOXREF, which specifies that you do
not want a cross reference table in the PRINT data set, is the default.

For example, to produce a cross reference table from object module SECOND.OBJ,
and place it in PRINT data set PRINT.DATA, enter:
LINK SECOND PRINT(PRINT.DATA) XREF

Producing a Symbol Table - the TEST Operand
To have the system place a symbol table created by the assembler and contained
in the input modules into the output module, use the TEST operand. NOTEST,
specifying that you do not want a symbol table, is the default.

For example, to have the system place a symbol table created by the assembler
and contained in the input module SECOND into the output module, enter:
LINK SECOND TEST

LINK Command

88 z/OS V1R4.0 TSO/E Programming Guide

Sending Error Messages to Your Terminal - the TERM/NOTERM
Operand

You can choose whether you want error messages directed to your terminal as well
as to the PRINT data set. TERM, which specifies that the system direct error
messages to your terminal as well as to the PRINT data set, is the default. If you
do not want error messages directed to your terminal, use the NOTERM operand.

For example, enter:
LINK SECOND NOTERM

LINK Command

Chapter 14. Binding or Link-Editing a Program 89

LINK Command

90 z/OS V1R4.0 TSO/E Programming Guide

Chapter 15. Loading and Executing a Program

LOADGO Command . 91
Loading and Executing Programs with No Operands 92
Passing Parameters when Loading and Executing Programs 92
Requesting Output Listings when Loading and Executing Programs - the

PRINT/NOPRINT and TERM/NOTERM Operands 92
Resolving External References when Loading and Executing Programs - the

CALL/NOCALL and LIB Operands 93
Specifying an Entry Point when Loading and Executing Programs - the EP

Operand . 93
Specifying Names when Loading and Executing Programs - the NAME

Operand . 94
CALL Command . 94

Loading and Executing Load Modules 94
Passing Parameters when Loading and Executing Load Modules 95

Before running a program, you must place the program into main storage. Placing a
program into main storage is called loading the program. To load and execute a
program, use either the LOADGO or CALL command. The LOADGO command
loads object modules produced by a compiler or assembler, and program objects
and load modules produced by the binder or linkage editor. If you want to load and
execute a single program object or load module, the CALL command is more
efficient.

LOADGO Command
Use the LOADGO command to load a compiled or assembled program into main
storage and begin execution. The LOADGO command invokes the system loader to
accomplish this function. The loader combines basic editing and loading services of
the binder or linkage editor and program fetch in one job step. Therefore, the load
function is equivalent to the link-edit and go function.

The LOADGO command does not produce objects or load modules for program
libraries, and it does not process binder or linkage editor control statements such as
INCLUDE, NAME, or OVERLAY. If you need to use these control statements, use
the LINK and CALL commands.

The LOADGO command also searches a specified call library (SYSLIB) or a
resident link pack area, or both, to resolve external references.

Using the LOADGO command, you can specify:

v The names of one or more data sets containing your program objects or object
modules and/or load modules.

v Parameters to pass to the program you execute.

v Whether the system is to produce output listings and place them in a data set
you specify or display them at your terminal.

v One or more names of library data sets to be searched by the binder or linkage
editor to locate object modules referred to by the module being processed; that
is, to resolve external references.

v Whether the system is to send error messages to your terminal as well as to the
PRINT data set.

© Copyright IBM Corp. 1988, 2002 91

v Whether the system is to include a list of external names and their addresses in
the PRINT data set.

v Whether the system is to search the data set(s) you specified on the LIB operand
to locate program objects or load modules to which the executing load module
refers.

v The external name for the loaded program’s entry point.

v The name you want to assign to the loaded program.

This topic shows you how to use the basic functions of LOADGO. For a complete
description of the LOADGO command, see z/OS TSO/E Command Reference.

Loading and Executing Programs with No Operands
To load and execute the source code in a data set or a group of data sets, issue
the LOADGO command and specify the data set name. The rightmost qualifier of
the data set name must be OBJ or LOAD. When loading and executing the code in
a single data set, specify the data set name without parentheses.

For example, to load and execute the code in data set PAYROLL.LOAD, enter:
LOADGO PAYROLL.LOAD

When loading and executing the code in a group of data sets, specify the data set
names in parentheses, separating each name with a comma. The names may be
data set names, names of members of partitioned data sets, or both.

For example, to load and execute the code in data sets FIRST.OBJ, SECOND.OBJ
and THIRD.LOAD, enter:
LOADGO (FIRST.OBJ,SECOND.OBJ,FIFTH.LOAD)

Passing Parameters when Loading and Executing Programs
To pass parameters to a program when loading and executing it, specify the
parameter enclosed in single quotes following the data set name field.

For example, to pass THE RAIN IN SPAIN as a parameter to the program in data
set FIFTH.LOAD, enter:
LOADGO FIFTH.LOAD ’THE RAIN IN SPAIN’

Requesting Output Listings when Loading and Executing Programs -
the PRINT/NOPRINT and TERM/NOTERM Operands

To produce output listings and place them in a data set, use the PRINT operand
with the data set name enclosed in parentheses. The NOPRINT operand,
suppressing output listings, is the default. Note that the NOPRINT and MAP
operands are mutually exclusive. The MAP operand, discussed below, puts data in
the PRINT data set. Therefore, if you want the MAP information, you must also
specify the PRINT operand with the LOADGO command.

For example, to send the output listings from the program in data set FIFTH.LOAD
to data set OUT5.DATA, enter:
LOADGO FIFTH.LOAD PRINT(OUT5.DATA)

To produce output listings and send the output to your terminal, use the PRINT
operand with an asterisk enclosed in parentheses.

LOADGO Command

92 z/OS V1R4.0 TSO/E Programming Guide

For example, to send the output listings from the program in data set FIFTH.LOAD
to your terminal, enter:
LOADGO FIFTH.LOAD PRINT(*)

All error messages are directed to your terminal as well as to the PRINT data set,
as the TERM operand is a default with the LOADGO command. To direct all error
messages only to the PRINT data set, not to your terminal, use the NOTERM
operand.

For example, to direct all error messages only to the print data set OUT5.DATA,
enter:
LOADGO FIFTH.LOAD PRINT(OUT5.DATA) NOTERM

Resolving External References when Loading and Executing Programs
- the CALL/NOCALL and LIB Operands

To resolve external references, you must know in which data sets the code or data
being referred to is kept. If you know the program object or load module library data
set(s) name, use the LIB operand with the name enclosed in parentheses to tell the
system where to look to resolve any external references.

For example, to search library data sets MYLIB, YOURLIB, and OURLIB, to resolve
any external references when executing the program in FIFTH.LOAD, enter:
LOADGO FIFTH.LOAD LIB(MYLIB,YOURLIB,OURLIB)

The CALL operand is a default with the LOADGO command. The system will
search for the data set(s) you specified on the LIB operand to locate the program
objects or load modules to which the executing code refers.

Use the NOCALL operand following the LIB operand to prevent the system from
searching the data set(s) you specified on the LIB operand.

For example, to suppress searching for program objects or load modules within
data set MYLIB, YOURLIB, or OURLIB when executing the program in
FIFTH.LOAD, enter:
LOADGO FIFTH.LOAD LIB(MYLIB,YOURLIB,OURLIB) NOCALL

To include a list of external names and their addresses in the PRINT data set, use
the PRINT, LIB and MAP operands. The NOMAP operand is the default and does
not include the MAP information in the PRINT data set.

For example, to resolve external references found in data set PROLIB, and list
them in data set OUT5.DATA, enter:
LOADGO FIFTH.LOAD PRINT(OUT5.DATA) LIB(PROLIB) MAP

Note that MAP and NOPRINT are mutually exclusive operands.

Specifying an Entry Point when Loading and Executing Programs - the
EP Operand

To specify an external name for a program’s entry point when loading and executing
the program, use the EP operand with the entry point name enclosed in
parentheses.

LOADGO Command

Chapter 15. Loading and Executing a Program 93

For example, to specify START as the external name for the entry point into the
program in data set FIFTH.LOAD, enter:
LOADGO FIFTH.LOAD EP(START)

If the entry point of the loaded program is a program object or load module, you
must specify this operand.

Specifying Names when Loading and Executing Programs - the NAME
Operand

To assign a name to a program in a data set, use the NAME operand followed by
the name of the program.

For example, to assign the name PROG3 to the program in FIFTH.LOAD, enter:
LOADGO FIFTH.LOAD NAME(PROG3)

CALL Command
Use the CALL command to load and execute a program that exists in executable
(program object or load module) form. The program may be user-written or it may
be owned by the system, for example, a compiler, sort, or utility program.

You can specify the name of the program (program object or load module) to be
processed. It must be a member of a partitioned data set. If you do not specify a
member name, member TEMPNAME is assumed. Also, you can pass parameters
to the program.

This topic shows you how to use the basic functions of the CALL command. For a
complete description of the CALL command, see z/OS TSO/E Command
Reference.

Loading and Executing Load Modules
To load and execute a load module in a member of a partitioned data set, specify
the name of the data set with the name of the member enclosed in parentheses.

For example, to load and execute the load module in member JOYCE of data set
PUBS.LOAD, enter:
CALL PUBS(JOYCE)

If the partitioned data set does not conform to data set naming conventions, then
you must specify the member name that contains the program you want to execute.
If you specify a fully-qualified data set name, enclose it in single quotation marks in
the following manner:
CALL ’D00ABC1.MYPROG.LOADMOD(DISCHARG)’

or
CALL ’SYS1.LINKLIB(IEUASM)’

If you do not enclose your data set name in quotes, a high-level userid is prefixed
to the data set name and the low-level qualifier, LOAD, is attached as well.

For example, if USER1 accesses PUBS with the following:
CALL PUBS

the actual program accessed is in member TEMPNAME in USER1.PUBS.LOAD.

LOADGO Command

94 z/OS V1R4.0 TSO/E Programming Guide

Passing Parameters when Loading and Executing Load Modules
To load and execute the load module in a partitioned data set and pass it
parameters, specify the parameters enclosed in single quotation marks following the
data set name.

For example, to pass PRANCE as a parameter to the load module in member
UDOIT of data set DLW.LOAD, enter:
CALL DLW(UDOIT) ’PRANCE’

In the previous example, the CALL command translates the parameter list to
uppercase characters. The ASIS operand of the CALL command prevents
translation to uppercase. Use the ASIS operand to pass lowercase data to
programs that accept lowercase characters in the parameter list.

For example, to pass LeaveAsis as a parameter to the load module in member
NOTRANS of data set DLW.LOAD, enter:
CALL DLW(NOTRANS) ’LeaveAsis’ ASIS

CALL Command

Chapter 15. Loading and Executing a Program 95

CALL Command

96 z/OS V1R4.0 TSO/E Programming Guide

Chapter 16. Testing a Program

The TEST and TESTAUTH Commands 98
The TEST Command . 98
The TESTAUTH Command 98
Using TEST or TESTAUTH 98

When to Use the TEST and TESTAUTH Commands 99
Testing a Currently Executing Program 99
Testing a Program Not Currently Executing 100
Testing an APPC/MVS Transaction Program 101

Examples of Issuing the TEST and TESTAUTH Commands 101
Example 1 . 101
Example 2 . 102
Example 3 . 102
Example 4 . 102
Example 5 . 102
Example 6 . 102
Example 7 . 103
Example 8 . 103
Example 9 . 103
Example 10 . 103

TEST and TESTAUTH Subcommands 103
Addressing Conventions Associated with TEST and TESTAUTH 105

Absolute Address . 105
Relative Address . 105
Symbolic Address . 105
[Module-Name].Entry-Name. 106
Qualified Addresses . 106
General Registers . 106
Floating-Point Registers . 107
Vector Registers . 107
Vector Mask Register . 107
Access Registers . 107
Indirect Address . 108
Address Expression . 109

Restrictions on the Use of Symbols 110
External Symbols . 110
Internal Symbols . 110
Addressing Considerations 111
Examples of Valid Addresses in TEST and TESTAUTH Subcommands 111

Programming Considerations for Using TEST and TESTAUTH 112
Considerations for 31-Bit Addressing 112
Considerations for Using the Virtual Fetch Services 112
Considerations for a Cross-Memory Environment 113
Considerations for the Vector Facility 113
Considerations for Extended Addressing 114
Considerations for Testing Inbound APPC/MVS Transaction Programs . . . 115
Considerations for a Tested Program’s Environment 115

This chapter introduces the TSO/E TEST and TESTAUTH commands and describes
how to test a program. It also discusses the terminology and concepts that you
must understand to use the TEST and TESTAUTH commands. The next chapter,
which is a tutorial, gives a step-by-step explanation of how to use TEST and shows

© Copyright IBM Corp. 1988, 2002 97

how TEST can help you determine the cause of a programming error. Because
TESTAUTH supports the same subcommands as TEST, you can use the tutorial to
learn about using TESTAUTH.

The TEST and TESTAUTH Commands
The TEST and TESTAUTH commands permit you to test an assembler language
program, including a command processor or application program, at your terminal.
The TEST and TESTAUTH commands also allow you to test APPC/MVS
transaction programs. Use the TEST command to test unauthorized programs; use
the TESTAUTH command to test authorized programs.

The TEST Command
While you are executing an unauthorized program that you have written, you may
encounter errors or abnormal terminations (abends). You can use the TEST
command to help determine the cause of errors in a program that is currently
executing. You can also use the TEST command to load and execute a program,
and monitor the program’s execution.

The TESTAUTH Command
You can use the TESTAUTH command to test an authorized program that is not
currently executing. Unlike the TEST command, you cannot use TESTAUTH to test
a currently executing program. However, the TESTAUTH command supports most
of the same operands, subcommands and functions as the TEST command.

Using TEST or TESTAUTH
Test a program by issuing either the TEST or TESTAUTH command. The TEST
command issues the TEST mode message to let you know that the system is waiting
for you to enter a subcommand. Similarly, the TESTAUTH command issues the
TESTAUTH mode message. Then use the various subcommands to perform the
following basic functions:

v Supply test data that you want to pass to the program.

v Execute the program from its starting address or from any address within the
program.

v Step though sections of the program, checking each instruction for proper
execution.

v Display selected areas of the program as they currently appear in virtual storage,
or display the contents of any of the registers.

v Interrupt the program at specified locations. After you have interrupted the
program, you can display areas of the program or any of the registers, or you
can issue other subcommands to be executed before returning control to the
program being tested. A location in a program where you interrupt execution is
called a breakpoint. Breakpoints that are specified for programs that are not yet
in virtual storage are called deferred breakpoints. You can establish deferred
breakpoints for programs that will be brought into virtual storage during execution
of the program being tested.

The following restrictions apply when specifying breakpoints:

– Do not insert breakpoints into the TSO/E service routines or into any of the
TEST or TESTAUTH load modules.

– The TESTAUTH command does not support breakpoints in storage that has a
protection key other than 8.

Testing a Program

98 z/OS V1R4.0 TSO/E Programming Guide

– When running in supervisor state or in a PSW protection key other than 8, the
TEST command does not honor breakpoints in any section of your program.

v Change the contents of specified program locations in virtual storage or the
contents of specific registers. You do this with the assignment function.

Note: The TESTAUTH command does not allow you to modify the contents of
storage that has a protection key other than 8.

In addition to these basic debugging functions, the TEST and TESTAUTH command
processors provide other functions, such as listing data extent blocks (DEBs), data
control blocks (DCBs), task control blocks (TCBs), program status words (PSWs),
and providing a virtual storage map of the program being tested.

The discussion of the TEST and TESTAUTH commands in this book shows you
how to use these basic functions. For a complete description of the syntax and
functions of the subcommands, see z/OS TSO/E Command Reference. For more
information on the TESTAUTH command, see z/OS TSO/E System Programming
Command Reference.

When to Use the TEST and TESTAUTH Commands
You can use the TEST command to:
v Test a currently executing, unauthorized program.
v Test an unauthorized program not currently executing.

You might want to test an executing program because it terminated abnormally or
because you want to check the current environment to see that the program is
executing properly.

You can use the TESTAUTH command to test an authorized program that is not
currently executing.

Testing a Currently Executing Program
If an unauthorized program terminates abnormally, you receive a diagnostic
message from the terminal monitor program (TMP) followed by a READY message.
If you respond to the diagnostic message with anything other than TEST, a question
mark (?), or TIME, the TMP terminates your program. If you issue the TEST
command without a program name, the currently active program remains in storage
when the TEST command processor gets control, and you can use the TEST
subcommands to debug the defective program.

You can enter both the ? and the TIME command before issuing the TEST
command to debug an abnormally terminating program. If you want a dump, enter a
null line instead of issuing the TEST command. If a SYSABEND, SYSMDUMP, or
SYSUDUMP file has already been allocated, the null line results in a dump being
printed.

If you want to examine the current environment of an executing program that is not
terminating abnormally, enter a single attention interruption. The currently active
program remains attached and the TMP responds to your interruption by issuing a
READY message. When you issue the TEST command without a program name,
the currently active program remains in storage under the control of the TEST
command processor. You can then use the TEST subcommands to examine the
current environment.

The TEST and TESTAUTH Commands

Chapter 16. Testing a Program 99

In the case of either an abend or an attention interruption, you should not enter a
program name following the TEST command. If you do, you lose the current
in-storage copy of the program because TEST loads a copy of the program you
specified instead. Even if you specify the name of the currently active program, a
new copy is loaded and the current one is lost.

Testing a Program Not Currently Executing
To test a program not currently executing, specify on the TEST or TESTAUTH
command the data set name containing the program to be executed and any other
applicable operands.

You can load and execute a program under the control of the TEST command
processor if it is either:
v A link-edited member of a partitioned data set or extended partitioned data set

(PDSE).
v An object module in a sequential or partitioned data set or PDSE.

You can load and execute a program under the control of the TESTAUTH command
processor if it is a link-edited member of an APF-authorized library.

Issue the TEST or TESTAUTH command followed by the program name and the
operands of the command that either define the program or are necessary to its
operation. For example:

v For the TEST command, the keyword LOAD or OBJECT depending on whether
the program is a load or an object module. The TESTAUTH command does not
support the OBJECT keyword. LOAD is the default.

v The keyword CP, TP, or NOCP, depending on whether the program to be tested
is a command processor, an APPC/MVS transaction program, or is another type
of program that is not a command processor or a transaction program. NOCP is
the default.

Note: You only need to specify the TP keyword if you are testing an inbound
APPC/MVS transaction program (see “Testing an APPC/MVS Transaction
Program” on page 101). You can test outbound transaction programs as
ordinary programs.

v Additional parameters necessary for the program being tested.

If the program you are testing is a command processor, specify the keyword CP.
The CP keyword causes the test routine to create a command processor parameter
list (CPPL), and place its address into register 1 before loading the program. If you
do not explicitly specify the CP operand, any parameters that you specify in the
TEST or TESTAUTH command are passed to the named program as a standard
operating system parameter list. That is, when the program under TEST or
TESTAUTH receives control, register 1 contains a pointer to a list of addresses that
point to the parameters.

To test an inbound APPC/MVS transaction program, specify the TP operand.

v Use the LU or BASELU keyword to specify the LU on which to test the
transaction program. These operands are valid only when you use the TP
keyword operand. BASELU is the default.

v Use the keyword KEEPTP to specify that TEST or TESTAUTH should not clean
up the transaction program and its conversations when TEST ends. If you do not
specify this keyword, the TSO/E TEST command cleans up the transaction
program and its conversations.

When to Use the TEST and TESTAUTH Commands

100 z/OS V1R4.0 TSO/E Programming Guide

Testing an APPC/MVS Transaction Program
The following example outlines the required steps for testing an APPC/MVS
transaction program with the TSO/E TEST command:

READY

(1) test (myprog) tp(’MAIL’) keeptp

(2) IKJ57522I YOU CAN ALLOCATE THE TP NOW

+++ the user starts a program that allocates the TP to be tested +++

(3) TEST

+++ the user can now test the TP as if it is an ordinary program +++

(4) TEST

(5) end

(6) READY

1. Prefix.LOAD(myprog) contains the load module for the transaction program to
be tested. MAIL is the transaction program name under which the load module
is to be tested. The inbound allocate request will try to allocate MAIL.

2. Wait for TSO/E TEST to prompt you to allocate the transaction program to be
tested. The message IKJ57522I indicates that it is your turn to start a program
that allocates an APPC/MVS conversation with the transaction program to be
tested.

3. TEST displays a TEST mode message, indicating that it is your turn to enter
TEST subcommands to control TEST’s processing.

4. TEST returns control to the terminal with another mode message.

5. To terminate TEST processing, use the END subcommand.

6. TEST returns to READY mode.

Because the LU keyword is not specified in this example, TSO/E TEST uses the
base LU for testing (BASELU is the default keyword). Also, the transaction program
and its remaining conversations are not cleaned up by the TEST command because
the KEEPTP keyword is specified.

Examples of Issuing the TEST and TESTAUTH Commands
The following examples show you how to invoke a program or a command
processor for testing:

Example 1
Operation: Enter TEST mode after experiencing either an abnormal termination of
an unauthorized program or an attention interruption.

Known:
Either you have received a message saying that your foreground program has
terminated abnormally, or you have pressed the attention interrupt key while
your program was executing. In either case, you would like to begin debugging
your program.
test

When to Use the TEST and TESTAUTH Commands

Chapter 16. Testing a Program 101

Example 2
Operation: Invoke an unauthorized program for testing.

Known:
The name of the data set that contains the program:
TLC55.PAYER.LOAD(THRUST)
The program is a load module and is not a command processor.
The prefix in the user’s profile is TLC55.
The parameters to be passed: 2048, 80
test payer(thrust) ’2048,80’

or
test payer.load(thrust) ’2048,80’

Example 3
Operation: Invoke an unauthorized program for testing.

Known:
The name of the data set that contains the program: TLC55.PAYLOAD.OBJ
The prefix in the user’s profile is TLC55.
The program is an object module and is not a command processor.
test payload object

Example 4
Operation: Test an unauthorized command processor.

Known:
The name of the data set containing the command processor:
TLC55.CMDS.LOAD(OUTPUT)
test cmds(output) cp

or
test cmds.load(output) cp

Note: You will be prompted to enter a command for the command processor.

Example 5
Operation: Invoke an unauthorized command processor for testing.

Known:
The name of the data set containing the command processor is
TLC55.LOAD(OUTPUT).
The prefix in the user’s profile is TLC55.
test (output) cp

Example 6
Operation: Invoke an authorized program for testing.

Known:
The name of the data set containing the program: ’SYS1.LINKLIB(AUTHPGM)’
The program is not a command processor.
testauth ’sys1.linklib(authpgm)’

Examples of Issuing the TEST and TESTAUTH Commands

102 z/OS V1R4.0 TSO/E Programming Guide

Example 7
Operation: Test an authorized command processor.

Known:
The name of the data set containing the command processor:
’SYS1.LINKLIB(AUTHCMD)’
testauth ’sys1.linklib(authcmd)’ cp

Example 8
Operation: Test an unauthorized APPC/MVS transaction program.

Known:
The name of the data set containing the transaction program.
USER.APPC.LOAD(TESTTP)
test ’user.appc.load(testtp)’ tp(’TESTTP’)

Example 9
Operation: Test an unauthorized APPC/MVS transaction program and do not clean
up the transaction program and its conversations when TEST ends.

Known:
The name of the data set containing the transaction program.
USER.APPC.LOAD(TESTTP)
test ’user.appc.load(testtp)’ tp(’TESTTP’) keeptp

Example 10
Operation: Test an authorized APPC/MVS transaction program and specify which
LU is to be used.

Known:
The name of the data set containing the transaction program.
USER.APPC.LOAD(TESTTP)
VTAMNODE.LU1 is the LU on which the transaction program is to be tested.
testauth ’user.appc.load(testtp)’ tp(’TESTTP’) lu(’VTAMNODE.LU1’)

TEST and TESTAUTH Subcommands
The TEST command issues the TEST mode message to let you know that the
system is waiting for you to enter a subcommand. Similarly, the TESTAUTH
command issues the TESTAUTH mode message. The subcommands of the TEST and
TESTAUTH commands are shown in Table 12. The tutorial in the next chapter
shows you how to use many of these subcommands to help determine the cause of
errors and to monitor the execution of your program. For a complete description of
the syntax and function of each subcommand, and for a list of the TSO/E
commands that you can use under TEST and TESTAUTH, see z/OS TSO/E
Command Reference.

Table 12. The TEST and TESTAUTH Subcommands

Subcommand Function

AND Performs a logical AND operation on data in two locations, placing
the results in the second location specified.

Examples of Issuing the TEST and TESTAUTH Commands

Chapter 16. Testing a Program 103

Table 12. The TEST and TESTAUTH Subcommands (continued)

Subcommand Function

ASSIGNMENT OF
VALUES(=)

Modifies values in virtual storage and in registers.

AT Establishes breakpoints at specified locations.

CALL Initializes registers and initiates processing of the program at a
specified address using the standard subroutine linkage.

COPY Moves data.

DELETE Deletes a load module from virtual storage.

DROP Removes symbols established by the EQUATE command from the
symbol table of the module being tested.

END Terminates all operations of the TEST or TESTAUTH command and
the program being tested.

EQUATE Adds a symbol to the symbol table and assigns attributes and a
location to that symbol.

FREEMAIN Frees a specified number of bytes of virtual storage.

GETMAIN Acquires a specified number of bytes of virtual storage for use by
the program being processed.

GO Restarts the program at the point of interruption or at a specified
address.

HELP Lists the subcommands of TEST and TESTAUTH and explains their
function, syntax, and operands.

LIST Displays the contents of a virtual storage area or registers.

LISTDCB Lists the contents of a data control block (DCB). You must specify
the address of the DCB.

LISTDEB Lists the contents of a data extent block (DEB). You must specify
the address of the DEB.

LISTMAP Displays a map of the user’s virtual storage.

LISTPSW Displays a program status word (PSW).

LISTTCB Lists the contents of the current task control block (TCB). You can
specify the address of another TCB.

LISTVP Lists the vector section size and the partial sum number.

LISTVSR Displays the vector status register (VSR).

LOAD Loads a program into virtual storage for execution. An authorized
program loaded by the TESTAUTH command must reside in an
APF-authorized library.

OFF Removes breakpoints.

OR Performs a logical OR operation on data in two locations, placing
the results in the second location specified.

QUALIFY Establishes the starting or base location for resolving symbolic or
relative addresses; resolves identical external symbols within a load
module.

RUN Terminates TEST or TESTAUTH and completes execution of the
program.

SETVSR Changes the vector mask register control mode. Updates the vector
count (VCT), the vector interruption index (VIX), and the vector
in-use bits (VIU).

TEST and TESTAUTH Subcommands

104 z/OS V1R4.0 TSO/E Programming Guide

Table 12. The TEST and TESTAUTH Subcommands (continued)

Subcommand Function

WHERE Displays the virtual address of a symbol or entry point, or the
address of the next executable instruction. WHERE can also be
used to display the module and CSECT name and the
displacement into the CSECT corresponding to an address.

Addressing Conventions Associated with TEST and TESTAUTH
Many of the tasks you can perform with TEST and TESTAUTH involve using
subcommands that require you to specify an address. For example, to display the
contents of a storage location, you must indicate the address of the area to be
displayed. An address used as an operand for a subcommand must be one of the
following types:

Absolute address
Relative address
Symbolic address
Module name and entry name (separated by a period)
Qualified address
General register
Floating-point register
Vector register
Vector mask register
Access register
Indirect address
Address expression

These address types are described in the following topics.

Absolute Address
A virtual storage address. An absolute address is 1 to 8 hexadecimal digits followed
by a period and not exceeding X'7FFFFFFF'. For example,
BC3D60.

is an absolute address.

Relative Address
A one-to eight-digit hexadecimal number preceded by a plus sign (+). A relative
address specifies an offset from the currently qualified virtual storage address. For
example,
+A0

is a relative address. See the discussion on qualified addresses that follows.

Symbolic Address
One to eight alphameric characters, the first of which is an alphabetic character. A
symbolic address corresponds to a symbol in a program or a symbol defined by the
EQUATE subcommand. Qualified symbolic addressing is discussed below. For a
detailed description on the use of symbols, see “Restrictions on the Use of
Symbols” on page 110.

TEST and TESTAUTH Subcommands

Chapter 16. Testing a Program 105

[Module-Name].Entry-Name
A name within a module capable of being externally referenced, preceded by a
period (.), and optionally preceded by a name by which the module is known. An
entry name is the symbolic address of an entry point into the module; for example,
a CSECT name. A module name can be the name or alias of a load module or the
name of an object module. Module or entry names can be any combination of up to
eight alphameric characters, the first of which is alphabetic or national.

Qualified Addresses
You can qualify symbolic or relative addresses to indicate they apply to a particular
module and CSECT. To do this, you must precede the address by the name of the
load or object module and the name of the CSECT. The qualified address must be
in the form:
modulename.csect.address

If the address is to apply to the current module, you only need to specify the
CSECT name in the following form:
csect.address

If the address is to apply to the current CSECT within the current module, only the
address is necessary; you do not need to qualify the address. The current module
and CSECT is initially set to the program being tested. This setting is automatically
changed each time a module under a different request block is invoked. This is
referred to as automatic qualification. Automatic qualification occurs when a module
is invoked by ATTACH, XCTL, SYNCH, or LINK. It does not occur when a module is
loaded, called, or branched to.

The module or CSECT used in determining a base location for resolving symbolic
and relative addresses can also be changed by using the QUALIFY subcommand.

For example, if the name of the module is OUTPUT, the CSECT is TAXES, and the
symbolic address is YEAR77, you would specify either:
output.taxes.year77

or
.taxes.year77

If the current module is OUTPUT. You would specify:
year77

If the module name and CSECT name are the same as above and the address to
be qualified is the relative address +4A, you would specify:
output.taxes.+4A

General Registers
You can refer to a general register using the AND, OR, assignment-of-value, COPY,
or LIST subcommands by specifying a decimal integer followed by an R. The
decimal integer indicates the number of the register and must be in the range 0
through 15. Other references to the general registers imply indirect addressing.

If your program issues the STIMER macro or involves asynchronous interruptions,
the contents of your registers may be changed by interruptions even though you are
in subcommand mode and your program does not get control.

Addressing Conventions ... TEST and TESTAUTH

106 z/OS V1R4.0 TSO/E Programming Guide

Floating-Point Registers
You can refer to a floating-point register using the LIST or assignment-of-value
subcommand by specifying a decimal integer followed by an E or D. The decimal
integer indicates the number of the register and must be a zero, two, four, or six. An
E indicates a floating-point register with single precision. A D indicates a
floating-point register with double precision. You must not use floating-point
registers for indirect addressing or in expressions.

Vector Registers
You can refer to a vector register using the LIST or assignment-of-value
subcommand. You cannot use vector registers for indirect addressing or in
expressions. Specify a vector register address by using the following format:

register-number
consists of a decimal integer in the range 0 through 15 if V is specified. If W is
specified, the register number must be an even decimal integer in the range 0
through 14.

V indicates single precision. V can be entered in either uppercase or lowercase.

W indicates double precision. W can be entered in either uppercase or lowercase.

element-number
consists of a decimal integer in the range 0 through one less than the section
size, or an asterisk, (*). Asterisk indicates that all elements of the vector register
are considered.

The section size, which is the number of elements in a vector register, is
dependent upon the model of the CPU that has the vector facility installed. See
System/370 Vector Operations for information on the vector facility.

The list below shows several examples of specifying vector registers:
1V(*) Specifies the entire contents of vector register 1 in single precision.
1V(4) Specifies element 4 of vector register 1 in single precision.
0W(1) Specifies element 1 of vector registers 0 and 1 in double precision.

Vector Mask Register
You can refer to the vector mask register using the LIST or assignment-of-value
subcommand. A vector mask register address consists of the decimal integer 0
followed by an M. You cannot use the vector mask register for indirect addressing
or in expressions.

Access Registers
You can refer to an access register using the LIST, COPY, or assignment-of-value
subcommand by specifying a decimal integer followed by an A. The decimal integer
indicates the number of the register and must be in the range 0-15. You cannot use
access registers for indirect addressing or in expressions.

Indirect Address
An indirect address is an absolute, relative, or symbolic address, (or a general
register containing an address) of a location that contains another address. An
indirect address must be followed by one or more indirection symbols to indicate a
corresponding number of levels of indirect addressing.

register-number { V } (element-number)
{ W }

Addressing Conventions ... TEST and TESTAUTH

Chapter 16. Testing a Program 107

The indirection symbols are:

v The percent sign (%), indicating that the low-order three bytes of the address are
used.

v The question mark (?), indicating that all 31 bits are used for the address.

To use a general register as an indirect address, specify a decimal integer (0
through 15) followed by an R and a percent sign, or an R and a question mark. For
example, if you want to refer to data whose address is located in register 7, you
would specify:
7r%

Example: Use of a relative address to form an indirect address.

Address: +A% (One level of indirect addressing)

Example: Comparison of use of % and ?

Address Data
X 0100A080
0000A080 AAAAAAAA
0100A080 BBBBBBBB

Subcommand Data Displayed
LIST X 0100A080
LIST X% AAAAAAAA
LIST X? BBBBBBBB

Example: Indirect addressing using a combination of indirection symbols.

Address expression: +A%??% (Four levels of indirect addressing)

BBBBBBBB

AAAAAAAA

Location 1C000BC4

Location BC4

Relative Location + A

Address: +A% (One level of indirect addressing)

1C000BC4

Relative Location + A

1C000BC4

Address: +A?

Addressing Conventions ... TEST and TESTAUTH

108 z/OS V1R4.0 TSO/E Programming Guide

Address Expression
An address followed by any number of expression values. You can specify the
address as:
v An absolute address
v A relative address (unqualified, partially or fully-qualified)
v A symbolic address (unqualified, partially or fully-qualified)
v An indirect address

An expression value consists of a plus or minus displacement value expressed as
either 1 to 8 hexadecimal digits or 1 to 10 decimal digits from an address in virtual
storage. Following are two examples of address expressions:

Decimal Example: address+14n specifies the location that is 14 bytes past that
designated by ‘‘address.’’

Hexadecimal Example: address+14 specifies the location that is 20 decimal bytes
past that designated by ‘‘address.’’

Decimal displacement (either plus or minus) is indicated by the n following the
numeric offset. You can indicate up to 256 levels of indirect addressing by following
the initial indirect address with a corresponding number indirection symbols (% or
?). An address expression is specified in the following format:

{-} [?] [{-} [?]]
address {+} value [% ..] [{+} value [% ..]]...

You can use any combination of percent signs and question marks after the value.

Example: Address expression with hexadecimal displacement using a combination
of indirection symbols.

Address expression: 7R?%+C%?%

Location + A

Location BC4

Location 148

Location B500A094

Location 34

00000148

DATA

B500A094

A2000034

00000BC4

Addressing Conventions ... TEST and TESTAUTH

Chapter 16. Testing a Program 109

When processing an address expression, TEST and TESTAUTH check the
high-order bit of the result of each addition or subtraction. If the bit is on, indicating
a negative value or overflow condition, the address is rejected.

Restrictions on the Use of Symbols
The TEST and TESTAUTH command processors can resolve external and internal
symbolic addresses, only if those addresses are available. Within certain limitations,
symbolic addresses are available for both object modules (processed by the loader)
and load modules (fetched by contents supervision). To ensure availability of
symbols, use the EQUATE subcommand to define the symbols you intend to use.
“Using Additional Features of TEST” on page 136 shows you how to do this.

External Symbols
You can access external symbols, such as CSECT names, for a program module, if
the program was brought into main storage by the TEST or TESTAUTH command
or one of its subtasks. This is the case for the program being tested, any program
brought into storage through the tested program, and any program loaded by the
LOAD subcommand.

External symbols for CSECT names that are in object modules are available only if
the loader had enough main storage to build composite external symbol table
dictionary (CESD) entries.

Internal Symbols
Internal symbols for load modules can be resolved if the CSECT containing the
symbol was assembled with the TEST parameter, the module was link-edited with
the TEST parameter, and the program was brought into storage by the TEST or

DATA

Register 7

Location 724

Location 78C

Location 1280

Location 37920

Location AC0

00000724

00001280

+4

+8

+C 0000078C

FC000AC0

00037920

Addressing Conventions ... TEST and TESTAUTH

110 z/OS V1R4.0 TSO/E Programming Guide

TESTAUTH command or one of its subtasks as previously explained. Names on
EQU, ORG, LTORG, CNOP, and DSECT statements cannot be resolved.

You cannot access internal symbols for object modules.

Addressing Considerations
If the necessary conditions for symbol processing are not met, you can use
absolute, relative, or indirect addressing, or you can define symbols with the
EQUATE subcommand.

Symbols within DSECTs are available only if the DSECT name has been defined
with the EQUATE subcommand.

For example, if NAME is a symbol in a DSECT named DATATBL, then to access
the data associated with NAME, you would first have to determine the address to
be used as a base address for the DSECT. (This is the address in the register on
the assembler USING instruction.) If the address is in register 7, you can enter:
equate datatbl 7r%

This establishes addressability to the DSECT, allowing the symbol NAME and all
other symbols in the DSECT to be accessed using the symbol.

TEST and TESTAUTH can access symbols and process CSECT names (to qualify
addresses and satisfy deferred breakpoints) for a module loaded from a data set in
LNKLIST concatenation, provided that the module was both assembled and
link-edited with the TEST option, and the data set involved is not READ-protected.
Symbols and CSECT names cannot be processed for a module accessed from
LPA.

Examples of Valid Addresses in TEST and TESTAUTH Subcommands
The following are examples that can be used with subcommands. In these
addresses, PROFIT is a module name, SALES is a CSECT name, and NAMES is a
symbol.

Address: Type of Address:

A23C40. Absolute

+E4 Relative

5R% 24-bit indirect

5R? 31-bit indirect

NAMES Symbol within program

.SALES.+26 Partially-qualified relative

14R%+28 Expression

PROFIT.SALES Module and entry name

+16+10n Expression

.SALES.NAMES Partially-qualified symbol

PROFIT.SALES.NAMES+8n Expression

DATA+10 Expression

.SALES Entry name

Restrictions on the Use of Symbols

Chapter 16. Testing a Program 111

PROFIT.SALES.NAMES Fully-qualified symbol

6R%+4%+12n%% Expression

PROFIT.SALES.+C0 Fully-qualified relative

Programming Considerations for Using TEST and TESTAUTH
When you use the TEST or TESTAUTH command, consider the environment in
which your program is running. The topics that follow describe programming
considerations for the following:
v Using 31-bit addressing
v Using the virtual fetch services
v Executing in a cross-memory environment
v Using the vector facility
v Using extended addressability
v Testing APPC/MVS transaction programs
v Evaluating a program’s environment after testing

Considerations for 31-Bit Addressing
v All subcommands that accept addresses can process addresses above 16 MB,

regardless of the current addressing mode of the program.

v You can use the 31-bit indirection symbol (?) on any subcommands to reference
data pointed to by 31-bit addresses.

v When TEST or TESTAUTH loads and executes a program, it uses the AMODE
and RMODE characteristics to determine the addressing mode at entry, as well
as whether the tested program is loaded above or below 16 MB.

v The AMODE operand on the CALL, GO, and RUN subcommands can change
the addressing mode of the program being tested.

v The loader, which TEST and TESTAUTH invoke when testing an object module,
loads the module above or below 16 MB based on the RMODE characteristics of
the module’s CSECTs. If the first CSECT is RMODE(ANY) and any other
CSECTs are RMODE(24), the loader loads the module below 16 MB in storage
and issues a warning message.

v Input passed in register 1 to the program being tested is below 16 MB in storage.
If you invoke the TEST or TESTAUTH command with the CP operand, register 1
contains the address of the command processor parameter list (CPPL).
Otherwise, register 1 contains the address of the input parameter list.

v The CALL subcommand places the return address of the tested program in
register 14. The high-order bit of register 14 is set to reflect the addressing mode
of the tested program.

v If the called program should not be invoked in the current addressing mode,
specify AMODE on the CALL statement. When control is returned, verify that the
addressing mode is appropriate before continuing execution.

Considerations for Using the Virtual Fetch Services
v External symbols are not available for a program fetch. For information on

addressing considerations, see “Restrictions on the Use of Symbols” on
page 110.

v Do not establish deferred breakpoints for a program managed by virtual fetch
because they are ignored.

Restrictions on the Use of Symbols

112 z/OS V1R4.0 TSO/E Programming Guide

v If you are testing program A, which invokes program B using the virtual fetch
services, you cannot use TEST or TESTAUTH subcommands to stop execution
of program B.

v If, while testing program A, you want to debug program B, you can use the
following method. Instead of allowing a virtual fetch GET request to pass control
to program B, load and call program B using TEST or TESTAUTH
subcommands.

– Use the AT subcommand to establish a breakpoint immediately before the
virtual fetch GET request in program A.

– When you reach the breakpoint, use the LOAD subcommand to load a
different copy of program B.

– You can then establish breakpoints using the AT subcommand at any points in
this copy of program B.

– Use the CALL subcommand to execute program B. Specify an address on the
RETURN parameter to bypass the virtual fetch GET request in program A.

Note: You cannot use the facilities of TEST or TESTAUTH to debug a program’s
interface with virtual fetch.

For a description of the virtual fetch services, see z/OS MVS Using the Subsystem
Interface.

Considerations for a Cross-Memory Environment
v If an attention interruption occurs while the program being tested is executing in

cross-memory mode, and you enter anything other than a null line, the
cross-memory environment is terminated and a message is displayed.

v If TEST or TESTAUTH is used with cross-memory applications, access to
storage by TEST or TESTAUTH subcommands is restricted to the home address
space.

v If an abnormal termination (abend) occurs while a cross-memory application is
executing outside the home address space, TEST and TESTAUTH do not
preserve the cross-memory environment. The registers and PSW at the time of
the abend and the abend code from the error message are the only debugging
information available for a cross-memory abend.

v TEST provides only limited testing for programs that execute in cross-memory
mode. The reason is that code running in cross-memory mode cannot issue any
SVCs (except ABEND). Any system service that depends on SVCs is unavailable
in cross-memory mode.

If a breakpoint is set, TEST places a SVC in the code being tested. When the
code being tested reaches the breakpoint, the SVC returns control to TEST
alerting it that a breakpoint has been hit. If the code under test is in
cross-memory mode this SVC cannot be issued and an abnormal termination
occurs.

Therefore, do not set breakpoints in code that will be running in cross-memory
mode.

Breakpoints set on instructions that perform address space switching are
intercepted by SVCs inserted by TEST.

Considerations for the Vector Facility
The TEST and TESTAUTH commands support the use of 16 vector registers, the
vector status register, and the vector mask register. Each of the 16 vector registers

Programming Considerations for Using TEST and TESTAUTH

Chapter 16. Testing a Program 113

contains a number of four-byte elements that are dependent on the model of the
CPU. The vector status register has special information about the vector registers
being processed.

You can use the TEST and TESTAUTH commands to display and modify the
contents of the 16 vector registers, display the vector status register, set
breakpoints at the vector opcodes, display the vector opcodes in their assembler
language format, view the partial sum number, view the vector section size, and set
fields in the vector status register.

v Use the LIST subcommand to display the contents of the 16 vector registers in
one of the following formats:
– A single element
– Multiple elements
– All elements at once

You can list registers in single precision floating point, fixed- point fullword binary
or hexadecimal format. The even numbered vector registers can also be
displayed in double precision floating point format.

v You can use the LIST subcommand to display the vector mask register. TEST
and TESTAUTH display the vector mask register in hexadecimal or binary format.
The length of the data displayed depends on the model of the CPU that has the
vector facility installed.

v Use the LISTVSR subcommand to display the vector status register.

v You can use the assignment function to modify the 16 vector registers in the
same format as you list them, that is, one at a time, some, or all at once. You
can use the assignment function to modify the vector mask register. The value
you assign to the vector mask register must be binary or hexadecimal.

v You can use the LISTVP subcommand to display the partial sum number and
vector section size.

v You can use the SETVSR subcommand to set fields in the vector status register.
You can change the vector mask register control mode, update vector count
(VCT), update vector interruption index (VIX), and update vector in-use bits
(VIU).

For examples showing how to display and manipulate vector registers and
elements, see “Testing Programs That Use the Vector Facility” on page 144.

Considerations for Extended Addressing
The TEST and TESTAUTH commands allow you to test programs that use
extended addressing. You can use the TEST and TESTAUTH commands to display
and modify the contents of the 16 access registers, set breakpoints at the opcodes
that support access registers, and display the opcodes in their assembler language
format. However, you cannot set breakpoints for the program return (PR)
instruction.

v Use the LIST subcommand to display:

– The contents of access registers used to reference data in alternate
address/data spaces. You can display the contents of the 16 access registers
in either binary, hexadecimal or decimal format.

– Data contained in alternate address/data spaces.

v Use the assignment function to modify the contents of the 16 access registers
and of storage in alternate address/data spaces.

v Use the COPY subcommand to copy data to an alternate address/data space or
from an alternate address/data space.

Programming Considerations for Using TEST and TESTAUTH

114 z/OS V1R4.0 TSO/E Programming Guide

v Use the ASCMODE operand on the CALL, GO and RUN subcommands to
change the address space control (ASC) mode for the executing program.

Note: You can set breakpoints at addresses in the primary address space only.

For examples showing how to display and manipulate access registers, see “Testing
Programs That Use Extended Addressing” on page 145.

Considerations for Testing Inbound APPC/MVS Transaction Programs
You can use the TEST and TESTAUTH commands to test APPC/MVS transaction
programs. You can use the commands with inbound transaction programs—those
that are initiated in response to inbound conversation requests from their partner
transaction programs. When testing an APPC/MVS transaction program:

v There must not be a transaction program existing in the TSO/E user’s address
space when the TSO/E TEST or TESTAUTH command is invoked to test an
APPC/MVS transaction program. You should log on with a logon procedure that
does not allocate APPC/MVS conversations if an APPC/MVS transaction program
is to be tested. After TSO/E TEST has been invoked with the TP keyword, you
can allocate DFM data sets. However, if you want to invoke TEST again, you
may have to log off and then log on again.

v You cannot use the TSO/E TEST or the TESTAUTH command to completely test
multi-trans (multiple transaction) transaction programs. You can, however, use
TSO/E TEST to partially test an APPC/MVS multi-trans transaction program up to
the point when the transaction program attempts to get the next transaction.

v The user-level transaction program profile for the LUs that are to be used for
transaction program testing must be defined at installation time. To define a
user-level transaction program profile, the LUADD statement in PARMLIB
member APPCPMxx must include the TPLEVEL(USER) keyword.

v If you press the attention key while waiting for the inbound allocate request, and
enter anything other than a null line, TSO/E cancels the test request.

v If you press the attention key twice to end the TSO/E TEST or TESTAUTH
command, and enter anything other than a null line, TSO/E cancels the
command. The TSO/E TEST or TESTAUTH command cleans up the transaction
program you are testing unless the KEEPTP keyword is specified.

Considerations for a Tested Program’s Environment
After the TEST or TESTAUTH command finishes processing a program, the
program’s environment has the following characteristics:
v The ASC mode is primary
v The primary, secondary, and home address spaces are equal
v The primary, secondary, and home address spaces are the same as when the

program was invoked

If the program you are testing ends abnormally, the environment of the tested
program might not be identical to the environment that it had prior to its ending. The
environment of the tested program might have one or more of the following
characteristics when it ends:
v The ASC mode was not primary
v The primary, secondary, and home address spaces were not equal
v The primary, secondary, and home address spaces were not the same as when

the program was invoked

Programming Considerations for Using TEST and TESTAUTH

Chapter 16. Testing a Program 115

You can use the assignment functions of the TEST command to correct the ASC
mode and address spaces. You can then correct the problem that caused the
abend in the program and continue testing.

Refer to z/OS TSO/E Command Reference for additional information about the
assignment functions of the TEST command.

If you cannot correct the environment of the tested program, you might be unable to
test the remainder of the program. (For example, you cannot correct the
environment of a tested program if that program was running in cross-memory
mode.) You must end your test session, correct the abend, and then test the
program again.

Programming Considerations for Using TEST and TESTAUTH

116 z/OS V1R4.0 TSO/E Programming Guide

Chapter 17. A Tutorial Using the TEST Command

How to Use This Tutorial . 118
Preparing to Use TEST . 119
Viewing a Program in Storage 121
Monitoring and Controlling Program Execution 129
Altering Storage and Registers 133
Using Additional Features of TEST 136
More TEST Subcommands . 143

GETMAIN and FREEMAIN 143
LOAD and DELETE . 143
CALL . 143

Testing Programs That Use the Vector Facility 144
Testing Programs That Use Extended Addressing. 145

Displaying and Modifying Access Registers 145
Displaying and Modifying Data in Alternate Address Spaces 146
Copying Data to and from Alternate Address Spaces 147
Providing Symbolic Names for Locations in Alternate Address Spaces 147

Example Programs for the TEST Tutorial 147

This chapter is presented in tutorial form, and is intended for TSO/E users who
have never used the TEST command to test a program. Before reading this
chapter, you must be familiar with the concepts and terminology presented in
Chapter 16, “Testing a Program” on page 97.

This tutorial describes how to use TEST subcommands to test and debug a
program. If you are an authorized user, you can use the TESTAUTH command to
test authorized programs. Because TESTAUTH supports the same subcommands
as TEST, you can use this tutorial to learn about using TESTAUTH.

This tutorial describes how to use the following subcommands:

Task Subcommands

View storage and registers LIST, LISTMAP, LISTPSW, LISTDCB,
LISTDEB, LISTTCB, LISTVP, LISTVSR

Find addresses WHERE

Control breakpoints AT, OFF

Alter storage and registers COPY, assignment of values function (=)

Alter vector registers SETVSR

Add and alter symbols EQUATE, DROP

Modify a base address QUALIFY

Control program execution GO, CALL, RUN

Obtain and free additional storage GETMAIN, FREEMAIN

Obtain and free other programs LOAD, DELETE

Obtain help information HELP

Terminate a TEST session END, RUN

The TEST subcommands use the address types described in “Addressing
Conventions Associated with TEST and TESTAUTH” on page 105. This tutorial
shows you how to use the following address forms and their notation:

© Copyright IBM Corp. 1988, 2002 117

Table 13. Address Forms Supported by TEST

Address Form Notation

Single address A single address.

Range of addresses Two addresses separated by a colon.

List of addresses Addresses enclosed in parentheses, and separated by blanks or
commas.

The tutorial is presented in the following sequence:

1. “Preparing to Use TEST” on page 119 describes how to assemble and link-edit
your program, and how to invoke TEST, run the program, and terminate the
TEST session.

2. “Viewing a Program in Storage” on page 121 shows several examples using the
LIST subcommand to view registers and storage. It also shows how to use the
different forms and types of addresses TEST supports.

3. “Monitoring and Controlling Program Execution” on page 129 shows you how to
use breakpoints with the AT, GO, and OFF subcommands.

4. “Altering Storage and Registers” on page 133 illustrates the use of the
assignment function and the COPY subcommand for altering storage to set up
test cases.

5. “Using Additional Features of TEST” on page 136 shows you how to use the
specialized LIST subcommands: LISTMAP, LISTPSW, LISTDCB, LISTDEB, and
LISTTCB. Also, it further demonstrates the use of the WHERE subcommand,
and introduces the QUALIFY and EQUATE subcommands.

“More TEST Subcommands” on page 143 follows the tutorial and describes the
uses of the GETMAIN, FREEMAIN, LOAD, DELETE, and CALL subcommands.
“Testing Programs That Use the Vector Facility” on page 144 discusses how to test
programs that use vector registers and elements.

How to Use This Tutorial
This tutorial is presented in a two-page format. The left-hand pages contain sample
terminal sessions. Information that you enter at the terminal is in lower case; the
responses from TSO/E are in upper case. The right-hand pages contain
explanations of the sample terminal sessions.

To use this tutorial at your terminal, enter the commands shown on the sample
terminal sessions (left-hand pages) and, at the same time, read the corresponding
explanations on the right-hand pages. Numbers provide a cross-reference from the
sample terminal sessions to the explanations.

You will need copies of the sample programs that are supplied in SYS1.SAMPLIB,
along with their corresponding object files. The table below shows the members of
SYS1.SAMPLIB that contain the source and object data used in this tutorial.

Source Member Object Member

IKJSAMP1 IKJOBJ1

IKJSAMP2 IKJOBJ2

To use this tutorial at your terminal, create a data set called ‘prefix.SAMPLE1.ASM’
that is a sequential data set of one track, with DCB characteristics of RECFM=FB,

TEST Command Tutorial

118 z/OS V1R4.0 TSO/E Programming Guide

LRECL=80, BLKSIZE=3120. Copy the source code from
‘SYS1.SAMPLIB(IKJSAMP1)’ into your data set.

Note: The source code and the assembler listings for the sample programs used in
this tutorial are also shown in “Example Programs for the TEST Tutorial” on
page 147.

This tutorial guides you through:

v Using the subcommands of TEST to:

– Change the contents of general purpose registers.

– Control the execution of a program including the re-execution of instructions.

– Change the contents of main storage variables and buffers.

– Assign names to main storage locations.

– Obtain and free additional main storage, as needed.

– Locate the real address of your program.

– List the PSW.

v Using the various methods of addressing main storage under TEST.

Preparing to Use TEST
To test your program, it must be in object module or load module form. Therefore,
you must first perform an assembly or an assembly and link-edit on your program.
You can do this with a batch job, or by issuing TSO/E commands in the foreground.
This tutorial uses foreground commands.

(1) READY

(2) asm sample1 test

(3) ASSEMBLER (XF) DONE
NO STATEMENTS FLAGGED IN THIS ASSEMBLY
HIGHEST SEVERITY WAS 0
OPTIONS FOR THIS ASSEMBLY
ALIGN, ALOGIC, BUFSIZE(STD), NODECK, NOESD, FLAG(0), LINECOUNT(55),
NOLIST, NOMCALL, YFLAG, WORKSIZE(2097152),
NOMLOGIC, NUMBER, OBJECT, NORENT, NORLD, STMT, NOLIBMAC,
TERMINAL, TEST, NOXREF(SHORT)
SYSPARM()
READY

(4) link sample1 test

READY

1. After your data set is created, place yourself at READY mode of TSO/E.

2. The command to assemble a program is ASM:

v ASM requires, as the first operand, the name of the data set that contains
the program to be assembled.

In this example, all you specify is SAMPLE1, because TSO/E naming
conventions places your prefix (usually your user ID) to the left of the name
you enter, and the type ASM to the right, yielding the fully-qualified name
‘prefix.SAMPLE1.ASM’.

v The ASM command assembles your program and produces an output object
module. This will be placed in the data set ‘prefix.SAMPLE1.OBJ’, which will
be created automatically if it does not exist.

How to Use This Tutorial

Chapter 17. A Tutorial Using the TEST Command 119

v You can specify assembler options after the data set name. The example
requests the TEST option, which allows you to access internal symbols in
your program. You will see the effect of this under the TEST command.

3. After the assembly is done, you should receive the final diagnostics, NO
STATEMENTS FLAGGED.

If you have assembly errors, correct your source code and reassemble until
you have no errors.

4. After the program is assembled, use the LINK command to link-edit it.

v As its first operand, the LINK command requires the name of the data set
containing the object module to be link-edited.

Again, the name SAMPLE1 suffices because TSO/E naming conventions
places your prefix on the left, and the type OBJ on the right, yielding
‘prefix.SAMPLE1.OBJ’.

v Similar to ASM, you can specify link-edit options on the command. TEST is
the option specified, and it continues to allow you to access internal
symbols.

v The output of the LINK command is a load member of a partitioned data set
(PDS). The default data set is ‘prefix.SAMPLE1.LOAD(TEMPNAME)’, which
is automatically created if it does not exist.

Now that your program is in load module form, you can execute it using the
TEST command.

(5) test sample1
(6) TEST

(7) go
(8) IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+
(9) TEST

(10) help

SUBCOMMANDS -
ASSIGN,AND,AT,CALL,COPY,DELETE,DROP,END,EQUATE,FREEMAIN,GETMAIN,GO,
LIST,LISTDCB,LISTDEB,LISTMAP,LISTPSW,LISTTCB,LISTVSR,LOAD,OFF,OR,
QUALIFY,RUN,WHERE.

IKJ56804I FOR MORE INFORMATION ENTER HELP SUBCOMMANDNAME OR HELP HELP
TEST

(11) end
(12) READY

5. The TEST command requires just the name of the program to test.

Again, you need only specify SAMPLE1, because TSO/E supplies the prefix on
the left and the TEST command assumes the type LOAD. Also, the default
member name is TEMPNAME, yielding the data set
‘prefix.SAMPLE1.LOAD(TEMPNAME)’.

6. TEST displays a TEST mode message, indicating that it is your turn to enter
TEST subcommands to control TEST’s processing.

Right now, your program has been loaded into storage, but has not yet started
execution.

7. Run your program with the GO subcommand.

This subcommand tells TEST to start executing the program wherever it left off
(in this case, at the start of the program), and continue until the program stops.

8. The program runs to normal completion, meaning there was no abend.

9. TEST returns control to the terminal with another mode message.

Preparing to Use TEST

120 z/OS V1R4.0 TSO/E Programming Guide

Now that the program has executed, you may wish to use other TEST
subcommands to view and alter the program.

10. The HELP subcommand provides a list of the TEST subcommands.

HELP also describes the function, syntax, and operands of the the TEST
command (not shown).

11. To terminate TEST processing, use the END subcommand.

12. TEST returns to READY mode.

So far, you have seen how to get a program ready for TEST using foreground
assembly and link-edit, how to invoke TEST, run the program, and terminate the
TEST session.

Viewing a Program in Storage
One function you will need when executing under TEST is to view the contents of
your data items and registers.

The LIST subcommand (abbreviated “L”) provides this facility, and it requires just
one operand — the register(s) or address(es) of storage you want to view.

When using TEST, you specify what you want to work with via an address. There
are several forms of addresses: registers, symbolic, relative, absolute, and indirect,
as you will see in the following examples.

This section of the tutorial shows you the LIST subcommand of TEST and uses
LIST to demonstrate the various forms of the addresses you can use on the TEST
subcommands.

You will need to view the source code for SAMPLE1 while performing the following
exercise; a listing of it appears in “Example Programs for the TEST Tutorial” on
page 147.

Preparing to Use TEST

Chapter 17. A Tutorial Using the TEST Command 121

(1) test sample1

TEST

(2) list 0r

0R 0001AD0C
TEST

(3) list 5r:8r

5R FFFFFFFF 6R FFFFFFFF 7R FFFFFFFF 8R FFFFFFFF
TEST

(4) list 14r:3r

14R 0000B82C 15R 0001CF68 0R 0001AD0C 1R 0001BFB0
2R FFFFFFFF 3R FFFFFFFF
TEST

(5) list (3r 9r 11r)

3R FFFFFFFF
9R FFFFFFFF
11R FFFFFFFF
TEST

(6) go

IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+
TEST

(7) list 0r:15r

0R 0001AD0C 1R 0001BFB0 2R FFFFFFFF 3R FFFFFFFF
4R FFFFFFFF 5R FFFFFFFF 6R FFFFFFFF 7R FFFFFFFF
8R FFFFFFFF 9R FFFFFFFF 10R FFFFFFFF 11R FFFFFFFF
12R FFFFFFFF 13R 0001BFB8 14R 0000B82C 15R 0001CF68
TEST

1. Test your program again, stopping at the start of your program.

2. To see the contents of a register, use the LIST subcommand, specifying the
register number followed by the letter “R”, meaning “register”.

Hint: Be careful not to get confused with a common programming convention
of naming the registers “R0”, “R1”, and so on. Under TEST, such names would
designate a main storage location, as you will see later.

3. At times you may wish to view a consecutive range of registers. The notation
for this is a colon separating the two registers of the range.

This subcommand requests registers 5 through 8.

4. Note that registers can wrap around, so you may specify a higher register
number first.

5. You may wish to view the contents of a list of registers. In this case, you must
enclose the list in parentheses and separate each register in the list with a
comma or a blank.

This subcommand requests the contents of registers 3, 9, and 11.

6. Now execute the program.

7. This subcommand displays all of the registers, after the program has
terminated.

Viewing a Program in Storage

122 z/OS V1R4.0 TSO/E Programming Guide

Note that TEST initializes registers 2 through 12 with X'FFFFFFFF' to allow
you to see which registers are changed by the tested program.

The above examples of registers show the three standard forms in which
addresses can be specified on the TEST subcommands:

v A single address

v A range of addresses (separated by a colon)

v A list of addresses (enclosed in parentheses and separated by blanks or
commas)

This is true whether the addresses are registers or main storage locations.

(8) list charcon

CHARCON TEST EXAMP
TEST

(9) list fullcon

FULLCON -1
TEST

list halfcon

HALFCON +32
TEST

(10) list adcon

ADCON 118676
TEST

list hexcon

HEXCON 0000001F
TEST

list packcon

PACKCON +25
TEST

list bincon

BINCON 10101100
TEST

(11) list charcon:bincon

CHARCON TEST EXAMP...*.
TEST

(12) list (adcon packcon 5r)

ADCON 118676
PACKCON +25
5R FFFFFFFF
TEST

Viewing the contents of main storage locations is just as easy as viewing
registers. All you need to specify is the address or addresses of the locations
you want to view.

Viewing a Program in Storage

Chapter 17. A Tutorial Using the TEST Command 123

Because you assembled and link-edited your program with the TEST option,
you will be able to view the contents of your program by using the symbolic
names on your data items and instructions.

8. This causes TEST to display the contents of CHARCON in character form.
TEST chooses character because you defined the item in your assembler code
as CL10.

9. Listing a fullword or halfword item causes TEST to convert the value to a
signed decimal number, which is easier to read than binary.

10. Here are the other data items in the program, listed with the default
characteristics implied by their definition.

11. Again, you may use the range and list forms of the LIST subcommand. This
subcommand displays all of the storage between CHARCON and BINCON.
TEST uses the first data type to determine how to display the storage.

Note: A dot indicates an unprintable character.

12. Here is a list of addresses, in parentheses. You can mix registers and storage
locations in the list.

(13) list save

SAVE
+0 +0
+4 +114616
+8 +0
+C +0
+10 +0
+14 +0
+18 +0
+1C +0
+20 +0
+24 +0
+28 +0
+2C +0
+30 +0
+34 +0
+38 +0
+3C +0
+40 +0
+44 +0

TEST

(14) list fullcon:bincon

FULLCON
+0 -1
+4 +31
+8 +2155461
+C -488423227
+10 -406727465
+14 +604
+18 -1409285540

TEST

13. Notice that displaying an item defined with a duplication factor causes TEST to
recognize this in its format.

14. Sometimes LIST’s default data type is not very helpful; here all the storage
after FULLCON is treated as fullwords.

Note: The default is the type specified in the program for the first item in the
range.

Viewing a Program in Storage

124 z/OS V1R4.0 TSO/E Programming Guide

(15) list bitcon

(16) IKJ57280I ADDRESS BITCON NOT FOUND+
IKJ56703A REENTER THIS OPERAND -

(17) ?

IKJ57280I BITCON NOT IN INTERNAL SYMBOL TABLE FOR TEMPNAME . SAMP1

(18) |

TEST

(19) list stop1

STOP1
+0 LH 3,122(0,12)

TEST

list stop2

STOP2
+0 A 3,114(0,12)

TEST

list stop3

STOP3
+0 ST 3,118(0,12)

TEST

(20) list stop1:stop3

STOP1
+0 LH 3,122(0,12)
+4 A 3,114(0,12)
+8 ST 3,118(0,12)

TEST

(21) list (stop1 stop3)

STOP1
+0 LH 3,122(0,12)
STOP3
+0 ST 3,118(0,12)
TEST

15. This is a sample of an error, because the symbol BITCON does not exist in the
program.

16. TEST asks you to reenter the incorrect address.

A “+” sign at the end of a message means that more information is available.

17. You can obtain this extra information by typing “?” with nothing else on the line.

18. To cancel the erroneous subcommand and return to the TEST mode, press the
attention key. This produces the “|” symbol on the screen.

19. TEST also allows you to display instructions. You see the explicit assembler
form.

20. This subcommand shows a range of instructions.

21. This subcommand shows a list of instructions.

Viewing a Program in Storage

Chapter 17. A Tutorial Using the TEST Command 125

(22) list charcon x

CHARCON
+0 E3C5E2E3 40C5E7C1 D4D7

TEST

(23) list fullcon x

FULLCON FFFFFFFF
TEST

(24) list fullcon:bincon x

FULLCON
+0 FFFFFFFF 0000001F 0020E3C5 E2E340C5

E7C1D4D7 0000025C AC
TEST

(25) list charcon x length(5)

CHARCON E3C5E2E3 40
TEST

(26) list save x multiple(5)

SAVE
+0 00000000
+4 0001BFB8
+8 00000000
+C 00000000
+10 00000000

TEST

list charcon length(2) multiple(5)

CHARCON
+0 TE
+2 ST
+4 E
+6 XA
+8 MP

TEST

(27) list save:bincon print(sample1)

TEST

Now, for some other operands of LIST. You may wish to read the syntax of the
LIST subcommand of TEST in z/OS TSO/E Command Reference at this time.

22. After the address on LIST, you can specify a data type that TEST should use
to display storage. This overrides the defined data type of the symbol.

This requests TEST to display CHARCON in hexadecimal.

23. Here is FULLCON displayed in hexadecimal.

24. Here is a range of storage, also in hexadecimal.

25. The length operand specifies the number of bytes you want to have displayed.
This overrides the defined length of the symbol.

26. The multiple operand allows you to specify a multiplicity factor for the item. You
can use this to display a table, or to format a long area for readability.

27. The print operand allows you to specify a data set, rather than the terminal, to
which the list should be directed. You may later print the data set to read the
information easily.

Viewing a Program in Storage

126 z/OS V1R4.0 TSO/E Programming Guide

The name of the data set that will contain the list consists of the name you
specify, preceded by your prefix and followed by TESTLIST as the descriptive
qualifier. Therefore, in this example, the information will be placed in
‘prefix.SAMPLE1.TESTLIST’.

(28) where charcon

(29) 1CFEA. LOCATED AT +82 IN TEMPNAME.SAMP1 UNDER TCB LOCATED AT 7C2560.
TEST

(30) list 1cfea.

0001CFEA. E3C5E2E3
TEST

(31) list 1cfea. c length(5)

0001CFEA. TEST
TEST

(32) list +82 length(8)

+82 E3C5E2E3 40C5E7C1
TEST

(33) list save+20

0001CFB4. 00000000
TEST

(34) list save+32n

0001CFB4. 00000000
TEST

(35) list save-10

0001CF84. 5030C076
TEST

(36) where save-10

1CF84. LOCATED AT +1C IN TEMPNAME.SAMP1 UNDER TCB LOCATED AT 7C2560.
TEST

(37) list +1c

+1C 5030C076
TEST

So far, you have seen the various operands of the LIST subcommand of TEST.
All addresses were specified as symbolic addresses. Normally, your symbolic
names cannot be referenced at execution time, but using the TEST operand
on the ASM and LINK commands caused your symbols to be available at
execution time.

Other forms of addresses besides symbolic are absolute, relative, indirect, and
address expressions, as shown below.

28. To obtain the absolute address of data or an instruction, use the WHERE
subcommand.

This example is requesting the location of CHARCON.

29. TEST gives the absolute address and the address relative to the CSECT.

Viewing a Program in Storage

Chapter 17. A Tutorial Using the TEST Command 127

30. To use an absolute address in a LIST command, follow the address with a
period. The period is a signal that you have entered an absolute address and
not a register number or a symbolic address.

Because TEST does not know the data type of this address, it displays the
data in hexadecimal, for the default length of four.

31. Using the data type and length operands lets you control how much storage is
displayed, and in what format.

32. A relative address is indicated by a plus sign followed by a hexadecimal
number. It represents the displacement of something from the beginning of the
CSECT. (Later you will be able to change this “base” address.)

33. This is an address expression, meaning a symbolic, absolute, or relative
address followed by a plus or a minus sign, followed by a hexadecimal number
(modifying value).

34. If you prefer to express the modifying value in decimal, you must follow the
number with the letter “n”.

“+32n” is the same as “+20”.

35. Here is a negative modifying value.

36. Just to check the address involved, WHERE tells you the absolute and relative
addresses of SAVE-10.

37. This displays the same storage location as SAVE-10.

(38) list 1r

1R 0001BFB0
TEST

(39) list 1bfb0.

0001BFB0. 8001BFB4
TEST

(40) list 1r%

0001BFB0. 8001BFB4
TEST

(41) list 1r%%

8001BFB4. 00000000
TEST

end

READY

(42) listcat

IN CATALOG:USERCAT
USER01.SAMPLE1.ASM
USER01.SAMPLE1.LOAD
USER01.SAMPLE1.OBJ
USER01.SAMPLE1.TESTLIST
READY

Now to look at indirect addresses.

38. Viewing the contents of a register, as you have already seen.

39. Here is the data at the address specified in register 1.

Viewing a Program in Storage

128 z/OS V1R4.0 TSO/E Programming Guide

40. Specifying a “%” or a “?” after a register says you want to view, not the
register, but the data to which the register points.

This subcommand produces the same result as the previous two
subcommands.

When you use “%”, the effective address is treated as a 24-bit address. When
you use “?”, the effective address is treated as a 31-bit address.

41. You can stack “%” and “?” signs to indicate multiple levels of indirect
addressing.

This means go to the address to which register 1 points, and then use that as
an address, and view the data there.

42. After ending TEST, a LISTCAT command displays the data sets involved so
far. Notice that the SAMPLE1.TESTLIST data set was created from your LIST
subcommand with the PRINT operand.

In this section of the tutorial, you have seen several examples of the LIST
subcommand to view registers and storage. You have also seen the three general
forms of address operands on TEST subcommands:
v Single address
v Range of addresses
v List of addresses.

Finally, you have seen the various types of addresses:
v Symbolic
v Absolute
v Relative
v Indirect
v Expressions
v Registers

Monitoring and Controlling Program Execution
So far, you have simply executed your program from start to finish, viewing storage
before execution began and after the program terminated. TEST also allows you to
interrupt execution of your program at selected points so that you can use the
TEST subcommands to view storage and perform other functions. The points at
which execution is interrupted are known as breakpoints.

You establish breakpoints with the AT subcommand of TEST. Whenever TEST
encounters a breakpoint, it returns control to you at the terminal. You can inspect
and modify storage and registers, and then resume execution at the breakpoint or
elsewhere. This facility allows you to monitor your program execution.

You can remove breakpoints with the OFF subcommand.

Viewing a Program in Storage

Chapter 17. A Tutorial Using the TEST Command 129

(1) test sample1

TEST

(2) at stop1

TEST

(3) at stop3

TEST

(4) go

(5) IKJ57024I AT STOP1
TEST

(6) go

(7) IKJ57024I AT STOP3
TEST

(8) go

IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+
TEST

(9) off

TEST

(10) go +0
IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+
TEST

1. You are testing program SAMPLE1 again.

2. The AT subcommand establishes breakpoints at one or more instructions in
your program.

This is setting a breakpoint at the label STOP1.

3. This sets another breakpoint at the label STOP3.

4. Start execution of the program.

5. When TEST encounters a breakpoint, it returns control to the terminal.

You receive control before execution of the instruction where the breakpoint
was placed.

6. The GO subcommand resumes execution at the point it was interrupted.

7. The program stops at the second breakpoint and returns control to the
terminal.

8. The last GO causes the program to run to completion.

9. The OFF subcommand with no operands removes all breakpoints from the
program.

10. The GO subcommand with an address causes TEST to restart execution from
that address. “+0” is the relative address of the start the program, so this
subcommand causes TEST to re-execute the program from the beginning.

Note: Register contents are not reset to the original entry values when you
execute this command.

Monitoring and Controlling Program Execution

130 z/OS V1R4.0 TSO/E Programming Guide

Because there are no breakpoints, the program runs to completion.

(11) at stop1:stop3

TEST

(12) go +0

IKJ57024I AT STOP1
TEST

(13) list 3r

3R FFFFFFFF
TEST

(14) go

IKJ57024I AT +4 FROM STOP1
TEST

(15) list 3r

3R 00000020
TEST

(16) at stop1:stop3 (list 3r)

TEST

(17) go +0

(18) IKJ57024I AT STOP1
3R 00000020
TEST

(19) go

IKJ57024I AT +4 FROM STOP1
3R 00000020
TEST

go

IKJ57024I AT +8 FROM STOP1
3R 0000001F
TEST

go

IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+
TEST

11. By specifying a range of addresses on the AT subcommand, you can cause
TEST to stop at every instruction in the range. This allows you to “instruction
step” through your program.

12. Start from the beginning of the program again.

13. View the contents of register 3 at the STOP1 breakpoint.

14. Continue execution.

15. View register 3 again.

If you want to perform some standard action, such as listing registers or
storage, every time TEST hits a breakpoint, you may include a list of TEST
subcommands on the AT subcommand.

Monitoring and Controlling Program Execution

Chapter 17. A Tutorial Using the TEST Command 131

The list of subcommands, even if it is only one subcommand, must be
enclosed in parentheses after the address(es) of the breakpoint(s).

16. This is requesting TEST to list the contents of register 3 before it returns
control to you at a breakpoint.

This action overrides the previous breakpoints established at STOP1 through
STOP3. (You don’t have to issue an intervening OFF.)

17. Run the program from the beginning once more.

18. TEST displays register 3 before giving control to the terminal.

19. You must still enter GO to continue execution.

(20) at stop1:stop3 (list 3r;go)

TEST

(21) go +0

IKJ57024I AT STOP1
3R 00000020
IKJ57024I AT +4 FROM STOP1
3R 00000020
IKJ57024I AT +8 FROM STOP1
3R 0000001F
IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+
TEST

(22) off (stop1 stop2)

TEST

(23) go +0

IKJ57024I AT +8 FROM STOP1
3R 0000001F
IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+
TEST

end

READY

20. If you do not want to type GO after every breakpoint, include GO in the list of
subcommands.

The individual subcommands must be delimited by semicolons within the
parentheses.

21. Start from the beginning again. TEST displays register 3 at every breakpoint,
but does not give control to the terminal because of the GO subcommand.

The program runs to completion.

22. You can selectively remove breakpoints by specifying the address(es), either
single, list, or range, on the OFF subcommand.

This is removing a list of breakpoints (at addresses STOP1 and STOP2). The
breakpoint at STOP3 remains.

23. Running from the beginning, TEST shows the breakpoint at STOP3 only, with
no stops made.

In this section of the tutorial, you have seen how to interrupt the execution of your
program by establishing breakpoints at instructions of your choice. You can do this
when you first enter TEST, before your program starts executing. Of course, you
can add additional breakpoints at any time during TEST processing.

Monitoring and Controlling Program Execution

132 z/OS V1R4.0 TSO/E Programming Guide

To remove breakpoints, use the OFF subcommand of TEST.

You can start execution at any point in your program by specifying an address on
the GO subcommand of TEST.

Altering Storage and Registers
TEST provides subcommands with which you can alter the contents of main
storage and registers. Two subcommands used in this tutorial are the assignment
function and the COPY subcommand. Assignment allows you to alter storage or
registers by entering a new value from the terminal. COPY allows you to move data
from one storage location or register to another.

You can use these functions in preparing test cases:

v To “set up” various combinations of data items, causing different sections of your
program to be executed.

v To make temporary “fixes” while your program is running.

(1) test sample1

TEST

(2) charcon=c’abcde’

TEST

(3) list charcon

CHARCON abcdeEXAMP
TEST

(4) charcon=c’ABCDE ’

TEST

list charcon

CHARCON ABCDE
TEST

(5) 5r=f’100’

TEST

list 5r

5R 00000064
TEST

1. Execute TEST for your program again.

2. This is an example of the assignment function. CHARCON is given the
character (“c”) value ‘abcde’.

There is no subcommand name for assignment. Just type the receiving field
followed by an equal sign, followed by the data type (same as for LIST), and
the value in quotes.

3. Notice that the assignment works somewhat differently than an assembler
language “DC” in that it does not pad character strings with blanks.

Monitoring and Controlling Program Execution

Chapter 17. A Tutorial Using the TEST Command 133

Also, if you enter your characters in lower case, they are not translated to
upper case.

4. To get upper case and padding with blanks, explicitly request it in the value
you are assigning.

5. Here is an assignment to a register. (Note the padding to the left with zeros.)

(6) list (hexcon fullcon) x

HEXCON 0000FD38
FULLCON FFFFFFFF
TEST

(7) copy hexcon fullcon

TEST

(8) list (hexcon fullcon) x

HEXCON 0000FD38
FULLCON 0000FD38
TEST

(9) charcon=c’ABCDEFGHIJ’

TEST

list charcon

CHARCON ABCDEFGHIJ
TEST

(10) copy charcon charcon+3

TEST

list charcon

(11) CHARCON ABCABCDHIJ
TEST

(12) charcon=c’ABCDEFGHIJ’

TEST

(13) copy charcon charcon+1 L(6)

TEST

(14) list charcon

CHARCON AAAAAAAHIJ
TEST

6. View the contents of HEXCON and FULLCON.

7. The COPY subcommand requires two operands: the “from” address and the
“to” address. It always moves four bytes by default.

Here, COPY moves the contents of HEXCON to FULLCON.

8. Because both of the items are four bytes long, their contents are the same
now.

9. Assign a new value to CHARCON.

10. Issue the COPY subcommand for the area where the fields overlap.

11. TEST picks up the first four bytes of CHARCON and moves it to
CHARCON+3.

Altering Storage and Registers

134 z/OS V1R4.0 TSO/E Programming Guide

12. Set up CHARCON again.

13. Now the “to” field address is just one byte greater than the “from” field
address. Also, a length of six bytes is specified with the LENGTH operand,
“L(6)”.

14. In this situation, the first byte of the “from” location is propagated for the
specified length.

(15) list 14r:1r

14R 0000B82C 15R 0001CF68 0R 0001AD0C 1R 0001BFB0
TEST

(16) copy 14r save+12n L(16)

TEST

(17) list save+12n L(16) x

0001CFA0. 0000B82C 0001CF68 0001AD0C 0001BFB0
TEST

(18) list stop1 x L(4)

STOP1 4830C07A
TEST

(19) where stop1

1CF7C. LOCATED AT +14 IN TEMPNAME.SAMP1 UNDER TCB LOCATED AT 7C2850.
TEST

(20) 6r=f’0’

TEST

(21) copy stop1 6r

TEST

list 6r

6R 4830C07A
TEST

(22) copy stop1 6r pointer

TEST

list 6r

6R 0001CF7C
TEST

end

READY

15. View registers 14, 15, 0, and 1.

16. You can use COPY to restore registers. In this case, the registers are
considered contiguous storage, so the LENGTH operand picks up 16 bytes of
registers starting from register 14 (registers 14, 15, 0, and 1), and moves the
information to SAVE+12n (remember, the “n” means decimal).

17. View the saved registers.

18. View the instruction STOP1.

Altering Storage and Registers

Chapter 17. A Tutorial Using the TEST Command 135

19. Obtain the address of the instruction STOP1.

20. Clear register 6 (all zeros).

21. Copying storage to a register “loads” that storage into the register.

22. Issuing the same command, but with the POINTER operand, causes TEST to
move, not the data at STOP1, but rather the address of STOP1, to the register,
(in effect, performing a Load Address).

In this section of the tutorial, you have seen several examples of the assignment
function and the COPY subcommand of TEST.

Assignment allows you to alter the contents of storage or registers by supplying a
new value from the terminal. You must also specify the data type of the value you
are assigning.

COPY allows you to move data from registers or storage to other registers or
storage. It is roughly equivalent to the various Move, Load, and Store instructions
available in System/370 Assembler Language.

Using Additional Features of TEST
You have been introduced to the basic features of TEST, so that you are now able
to view your program in storage, modify your program in storage, monitor your
program’s execution using breakpoints, and restart execution at any point in your
program. You have also seen the various forms of addresses used on TEST
subcommands.

This section of the tutorial shows you some of the additional features of TEST,
including the specialized LIST subcommands and some further addressing
possibilities.

The exercise in this section uses the IKJSAMP2 member of SYS1.SAMPLIB. To
perform this exercise at your terminal, create a data set called
‘prefix.SAMPLE2.ASM’ and copy the source code from
‘SYS1.SAMPLIB(IKJSAMP2)’ into your data set. A copy of the source code and
assembler listing for the sample program used in this exercise are also included in
“Example Programs for the TEST Tutorial” on page 147.

The source program in SAMPLE2.ASM will assemble and link-edit correctly, but it
will not run to normal completion. There is an error in the program that you will
locate and fix during the following TEST session.

Note: The program in SAMPLE2.ASM was assembled for this exercise on an
MVS/370 system. The assembler output will not match what is shown here.
Therefore, you should skip the assemble step in the tutorial (step 1) and
copy ‘SYS1.SAMPLIB(IKJOBJ2)’ into your own data set called
‘prefix.SAMPLE2.OBJ’.

Altering Storage and Registers

136 z/OS V1R4.0 TSO/E Programming Guide

READY

(1) asm sample2 test

ASSEMBLER (XF) DONE
NO STATEMENTS FLAGGED IN THIS ASSEMBLY
HIGHEST SEVERITY WAS 0
OPTIONS FOR THIS ASSEMBLY
ALIGN, ALOGIC, BUFSIZE(STD), NODECK, NOESD, FLAG(0),
LINECOUNT(55), NOLIST, NOMCALL, YFLAG, WORKSIZE(2097152),
NOMLOGIC, NUMBER, OBJECT, NORENT, NORLD, STMT, NOLIBMAC,
TERMINAL, TEST, NOXREF(SHORT), SYSPARM()

READY

(2) link sample2 test

READY

(3) alloc dd(outdd) da(*)

READY

(4) test sample2

TEST

(5) at addit

TEST

(6) go

(7) IKJ57024I AT ADDIT
TEST

(8) listmap

REGION SIZE 007FB000 AT ADDRESS 00005000
REGION SIZE 7D800000 AT ADDRESS 02800000
UNDER TCB AT 007C2AA8

PROGRAM NAME LENGTH LOCATION
TEMPNAME 000000B0 0001CF50

ACTIVE RBS: TYPE PROGRAM-ID
PRB TEMPNAME

SUBPOOL INFORMATION:
NUMBER LOCATION LENGTH

0 0001B000 00001000
78 0000B000 00001000

IKJ57395I MAP COMPLETE
TEST

1. Assemble your SAMPLE2.ASM data set with the TEST operand.

2. Link-edit the data set with the TEST operand.

3. This program requires an output data set with a ddname of OUTDD. The
ALLOC command of TSO/E is the equivalent of a JCL DD statement. This
command allocates the ddname OUTDD to the terminal by specifying “DA(*)”.

4. Test the load module.

5. Set a breakpoint at the label ADDIT.

6. Start execution.

7. The program stops at the breakpoint.

Using Additional Features of TEST

Chapter 17. A Tutorial Using the TEST Command 137

8. The LISTMAP subcommand of TEST provides a map of the storage in your
region.

LISTMAP is one of the specialized LIST subcommands. Like LIST, it has an
optional PRINT operand that allows you to specify the name of a data set to
which you would like the output of the subcommand directed.

(9) listpsw
IKJ57652I PSW LOCATED AT 7B8208
XRXXXTIE KEY CMWP S CC PROGMASK AMODE INSTR ADDR
01000111 8 1101 0 00 0000 0 0001DEBE

TEST

(10) listpsw addr(20.)

IKJ57652I PSW LOCATED AT 20
XRXXXTIE KEY CMWP S CC PROGMASK AMODE INSTR ADDR
01000111 8 1101 0 10 0000 1 00CB9D60

TEST

(11) listdcb outdcb

IKJ57652I DCB LOCATED AT 01DF9C
DEVICE INTERFACE SEGMENT
RELAD KEYCN FDAD DVTBL KEYLE DEVT TRBAL
00000000 00 0000000000000000 000000 00 4F 0000

COMMON INTERFACE
BUFNO BUFCB BUFL DSORG IOBAD
01 01EFC0 0000 4000 00000001

FOUNDATION EXTENSION
HIARC-BFTEK-BFALN EODAD RECFM EXLST

06 000001 80 000000

FOUNDATION
TIOT MACRF IFLGS DEBAD OFLGS
0504 0050 00 7B7A24 92
TEST

(12) listdcb outdcb field(dcbdebad)

IKJ57652I DCB LOCATED AT 01DF9C
DEBAD
7B7A24
TEST

9. The LISTPSW subcommand displays the contents of the PSW, the current
PSW by default.

10. With the ADDR operand, you can specify the address of the PSW you wish to
see.

LISTPSW also has the PRINT operand.

11. The LISTDCB subcommand lists the contents of the DCB, with fields labelled.
You must specify the address of the DCB you wish to view, because TEST
cannot choose a suitable default.

This subcommand is displaying the DCB in your program.

12. If you wish to see only selected fields of the DCB, use the FIELD operand. In
parentheses, you can specify one or more field names (standard DSECT
names) that you wish to have displayed.

LISTDCB also has the PRINT operand.

Using Additional Features of TEST

138 z/OS V1R4.0 TSO/E Programming Guide

(13) listdeb 7b7a24.

IKJ57652I DEB LOCATED AT 7B7A24
BASIC SECTION
NMSUB TCBAD AMLNG DEBAD OFLGS IRBAD OPATB QSCNT FLGS1 RESERVED
01 7B2588 10 000000 C8 000000 0F 00 11 00
NMEXT USRPG PRIOR ECBAD PROTG/DEBID DCBAD EXSCL APPAD
01 000000 FF 000000 8F 01DF9C 02 7B7A00
IKJ57334I DEB DOES NOT HAVE A DIRECT ACCESS SECTION+
TEST

(14) equate outdeb 7b7a24.

TEST

(15) listdeb outdeb

IKJ57652I DEB LOCATED AT 7B7A24
BASIC SECTION
NMSUB TCBAD AMLNG DEBAD OFLGS IRBAD OPATB QSCNT FLGS1 RESERVED
01 7B2588 10 000000 C8 000000 0F 00 11 00
NMEXT USRPG PRIOR ECBAD PROTG/DEBID DCBAD EXSCL APPAD
01 000000 FF 000000 8F 01DF9C 02 7B7A00
IKJ57334I DEB DOES NOT HAVE A DIRECT ACCESS SECTION+
TEST

(16) drop outdeb

TEST

13. The LISTDEB subcommand is similar to the LISTDCB command, in that you
must specify the address of the DEB that you wish to view.

It also has the optional FIELD and PRINT operands.

14. With the EQUATE subcommand, you can add additional symbols to your TEST
session, or you can override the address or attributes of existing symbols.

The example is equating the symbol OUTDEB to the absolute address of the
DEB. Additional operands on EQUATE would allow you to specify the data
type, length, and multiplicity of the symbol.

EQUATE is useful for providing symbolic names to storage locations that are
otherwise addressable only via absolute or relative addresses.

15. List the DEB now using the symbolic name from the EQUATE.

16. The DROP subcommand removes symbols added with the EQUATE
subcommand. It can remove all symbols, by specifying no operands, or it can
remove selective symbols, as in this example.

Using Additional Features of TEST

Chapter 17. A Tutorial Using the TEST Command 139

(17) listtcb

IKJ57652I TCB LOCATED AT 7B2588
RBP PIE DEB TIO CMP TRN MSS PKF
007FE8F0 00000000 007B7A24 007CA000 00000000 4401B798 7FFFDAA8 80

FLGS LMP DSP LLS JLB JPQ
0000000001 FF FF 007C2818 0001AD0C 00000000

GRS
R0 R1 R2 R3
00000001 0001B798 007FE028 7FFFE070
R4 R5 R6 R7
007B2588 00FDD630 007FE8F0 007FE8F0
R8 R9 R10 R11
01DE619E 0001B798 01DE519F 02902108
R12 R13 R14 R15
81DE41A0 02902108 02902270 80FF30BA

FSAB TCB TME JSTCB NTC OTC LTC IQE
01CFB8 00000000 00000000 007C2E88 00000000 007B2290 00000000 00000000

ECB TSFLG STPCT TSLP TSDP PQE/RD AQE/AE NSTAE STABB TCT
000097E0 00 01 00 00 7FF1451C 00000000 00 7EAFB0 807F9200

USER NDSP0 NDSP1 NDSP2 NDSP3 RESERVED JSCB SSAT IOBRC
00000000 00 00 40 00 00000000 007B81C4 00FDB938 00000000

RESERVED EXT1 NDSP4 NDSP5 FLGS6 FLGS7 DAR RESERVED SYSCT STMCT
00000000 00000000 00 00 00 00 00 00 00 00

EXT2 AECB XSB BACK RTWA NSSP XLAS ABCUR
007B26E0 00000000 007FE9C0 007B2290 00000000 00000000 00000000 00

RESERVED TID RESERVED XSCT1 CCPVI FOE SWA STAWA TCBID
00 00 00 0000 0041 00000000 7F71F238 00000000 E3C3C240

RTM12 ESTAE RESERVED SEQNO AFFN FBYT1-2
00000000 00000000 7F71E388 0009 FFFF 0000

RESERVED ERD EAE
C0000000000000000000007C1DD800000000 7FF1452C 00000000

TCB EXTENT
TFLG GTFA RESERVED RCMP EVENT TQE CAUF PERCP PERCT
00 000000 00 000000 00000000 00000000 00000000 00000000 00000000

TEST

17. The LISTTCB subcommand is the last of the specialized LIST subcommands.
By default, it displays the current TCB, but by using the ADDR operand (like
LISTPSW) you can display any TCB.

It also has the optional PRINT operand.

Using Additional Features of TEST

140 z/OS V1R4.0 TSO/E Programming Guide

(18) off

TEST

(19) go

IKJ56641I TEMPNAME ENDED DUE TO ERROR
IKJ56640I SYSTEM ABEND CODE 0C9 REASON CODE 0009
TEST

(20) where

1DED2. LOCATED AT +3A IN TEMPNAME.TABAVG UNDER TCB LOCATED AT 7B2588.
TEST

(21) list 4r:7r

4R 00000000 5R 0000016E 6R 00000018 7R 00000000
TEST

(22) 7r=f’12’

TEST

list 7r
7R 0000000C
TEST

(23) go 1ded0.

TABLE AVERAGE PROGRAM
IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+
TEST

(24) list (sum avg)

SUM +366
AVG

+0 +6
+4 +30

TEST

Execute the program again. It had stopped at the breakpoint at ADDIT.

18. Remove the breakpoint so that the program will run to completion.

19. GO continues execution. The program does not complete normally. The abend
code for the program is 0C9, which indicates that a fixed-point-divide exception
occurred (division by zero).

If the abend information does not appear on your screen as shown, enter a
question mark.

20. The WHERE subcommand returns the failing location and the displacement
within the CSECT.

Looking at the source for SAMPLE2, you can see that the failing instruction is
really the one prior, the DR. This instruction is two bytes before the “failing
location” shown by the WHERE subcommand.

21. Viewing the registers, register 7 contains zero, and the program is dividing by
register 7.

22. Put the correct value in register 7 for the divide (the number of elements in the
table is 12).

This provides a temporary “fix” for the problem.

23. Restart the program from the DR instruction.

Using Additional Features of TEST

Chapter 17. A Tutorial Using the TEST Command 141

The program now runs to normal completion.

24. View the program’s result fields.

The example on this page shows how to determine the abend code and the
failing instruction if your program under TEST should not complete normally.

(25) where +10

1DEA8. LOCATED AT +10 IN TEMPNAME.TABAVG UNDER TCB LOCATED AT 7B2588.
TEST

(26) qualify outdcb

TEST

(27) where +10
1DFAC. LOCATED AT +114 IN TEMPNAME.TABAVG UNDER TCB LOCATED AT 7B2588.
TEST

(28) list +10

+10 004F0000
TEST

(29) list outdcb+10

0001DFAC. 004F0000
TEST

(30) qualify tempname.tabavg

IKJ57277I QUALIFICATION IS UNDER TCB AT 7B2588
TEST

(31) where +10

1DEA8. LOCATED AT +10 IN TEMPNAME.TABAVG UNDER TCB LOCATED AT 7B2588.
TEST

end

READY

Earlier in the topic on addressing, it was stated that relative addresses are
calculated in relationship to the start of the CSECT currently active. The
following examples show you how to alter this “base” address for relative
addresses.

25. Find out where +10 is currently located.

26. The QUALIFY subcommand changes the base address for relative addresses.
Now any relative addresses will be calculated from the address of OUTDCB,
rather than from the start of the CSECT.

27. The address +10 is now at a different absolute location (+114 from the start of
the CSECT).

28. View the contents of +10.

29. View the OUTDCB+10; these are now the same location.

30. To return to a base of the CSECT, use QUALIFY again with the qualified
address of the CSECT (the load module name, TEMPNAME), followed by a
period, then the CSECT name (in this case, TABAVG).

31. Now the relative address +10 is calculated from the CSECT.

Using Additional Features of TEST

142 z/OS V1R4.0 TSO/E Programming Guide

Qualified address are useful when you are working with more than one CSECT, or
more than one load module in storage. By qualifying a symbolic or relative address
with the load module name and the CSECT name, you can alternate between
programs, viewing and altering storage.

More TEST Subcommands
So far, this tutorial has shown you some of the subcommands of TEST, what they
can do for you, and some of the variations you can use. There are still more
versions of these subcommands.

GETMAIN and FREEMAIN
The GETMAIN and FREEMAIN functions of TEST are essentially the same as the
system macros. That is, they enable you to acquire additional storage dynamically,
and to free it. You must specify the amount of storage and the subpool (default is 0)
from which you wish to acquire the storage. On GETMAIN, you can optionally
EQUATE the new storage to a symbol so you do not have to remember the
absolute address of it.

GETMAIN and FREEMAIN are useful for maintaining a “scratch pad” with copies of
data areas that you need while testing, and especially for “scaffolding” when setting
up test cases. You can build your own parameters in the acquired area to send to a
routine, and see how the program alters these parameters.

LOAD and DELETE
At times, you may wish to bring additional programs into storage, or obtain your
own copy of a module that normally resides in the link pack area. If your program
attempts to LOAD, LINK, XCTL, or ATTACH another module, the system looks for
the module in the following search order sequence:
1. TASKLIB
2. STEPLIB
3. JOBLIB
4. LPA
5. LNKLST

If the module is not in any of these areas, it will not be found. To avoid this, bring
the module into virtual storage by using the LOAD subcommand of TEST.

The LOAD command allows you to load a program from a data set. This program
will be a fresh copy, placed in your own region, to which you can add breakpoints.
(You cannot put breakpoints in LPA-resident modules because they are
write-protected.)

DELETE allows you to remove the module from your region.

CALL
If you wish to invoke a program and pass it parameters, without setting up the
parameter list yourself, you can use the CALL subcommand of TEST. You can also
specify where CALL should return control. TEST will build a parameter list and set
register 1 to its address, and it will set register 15 to the calling address, and
register 14 to the return address (if you request). When using CALL, you may want
to save registers 1, 14, and 15 prior to the CALL, to protect this information.

Using Additional Features of TEST

Chapter 17. A Tutorial Using the TEST Command 143

An alternative to CALL is to obtain storage with GETMAIN, use assignment and
COPY to build the parameter list and set the registers, and use GO to branch to the
routine.

Testing Programs That Use the Vector Facility
You can display and alter vector registers by using the LIST, LISTVSR, and
SETVSR subcommands of TEST and the TEST assignment function.

You can list vector system parameters by using the LISTVP subcommand of TEST.

Use the AT subcommand of TEST to set breakpoints at the vector opcodes in the
same way you use it to set breakpoints in other programs.

Examples showing the use of the LIST subcommand to display the contents of
vector registers follow:

Subcommand Function

LIST 1V(*) X Displays the entire contents of vector register 1 in
hexadecimal.

LIST 1V(4) F Displays the fourth element in vector register 1 in
fullword fixed point binary.

LIST 3V(3):3V(20) Displays elements 3 through 20 in vector register 3
in single precision floating point.

LIST 0V(*):15V(*) Displays the entire contents of all 16 vector
registers in single precision floating point.

LIST 0W(*) Displays the entire contents of vector register 0 in
double precision floating point.

Use the assignment function to modify the contents of the 16 vector registers.
Some examples illustrating the use of the assignment function follow:

Subcommand Function

1V(*)=X'00000000' Sets the entire contents of vector register 1 to
hexadecimal zeros.

1V(10)=F‘33’ Sets the tenth element in vector register 1 to
decimal 33.

3V(3)=(X'00',X'02') Sets elements 3 and 4 of vector register 3 to X'00'
and X'02', respectively.

0W(1)=D‘+33E+2’ Sets the first element of vector registers 0 and 1 to
the double precision floating point value of +33E+2.

To display the contents of the vector status register, use the LISTVSR subcommand
of TEST. LISTVSR works the same as the LISTPSW subcommand. The following
example shows the syntax and output of the LISTVSR subcommand after issuing a
RESTORE VSR instruction (VSRRS):
listvsr

VSR LOCATED AT 7FFF9EF8
RESERVED VMM VCT VIX VIU VCH

00000000 00000000 0 00127 00127 00000000 00000000
TEST

More TEST Subcommands

144 z/OS V1R4.0 TSO/E Programming Guide

You can use the LIST subcommand and the TEST assignment function to display
and modify the vector mask register. Some examples follow:

Subcommand Function

0M=X'046C471F' Sets the contents of the vector mask register to
X'046C471F'

There is one bit in the vector mask register for each
vector element. In this example, the number of
vector elements, which is also referred to as the
section size, is 32 decimal.

LIST 0M Displays the contents of the vector mask register in
hexadecimal.

You can use the LISTVP subcommand of TEST to display the number of vector
elements (vector section size) and the partial sum number. For example:
listvp

IKJ57026I VECTOR SYSTEM PARAMETER
SECTION SIZE: 00256
PARTIAL SUM: 00004

TEST

You can use the SETVSR subcommand of TEST to change the vector mask
register control mode, update vector count (VCT), update vector interruption index
(VIX), and update vector in-use bits (VIU).

The following examples show the use of the SETVSR subcommand.

Subcommand Function

SETVSR MASK Changes the vector mask register control mode.

SETVSR NOMASK Changes the vector mask register control mode.

SETVSR VCT(X'nnnn') Updates the vector count (VCT), where X'nnnn' is
the number of vector elements to process.

SETVSR VIX(X'nnnn') Updates the vector interruption index (VIX), where
X'nnnn' is the vector element to start processing
with.

SETVSR VIU(X'nn') Updates the vector in-use bits (VIU), where X'nn'
indicates the active register pairs.

Testing Programs That Use Extended Addressing
You can use the subcommands of TEST to display and modify access registers,
and display and modify data in alternate address/data spaces. For information
about writing programs that use extended addressing, see z/OS MVS Programming:
Assembler Services Reference ABE-HSP.

Displaying and Modifying Access Registers
You can display and modify access registers by using the LIST subcommand and
the TEST assignment function.

The following examples show the use of the LIST subcommand to display the
contents of access registers:

Subcommand Function

Testing Programs That Use the Vector Facility

Chapter 17. A Tutorial Using the TEST Command 145

LIST 1A Displays the contents of access register 1 in hexadecimal.

LIST 4A F Displays the contents of access register 4 in decimal.

LIST 0A:15A Displays the contents of access registers 0 through 15 in
hexadecimal.

The following examples show the use of the assignment function to modify the
contents of the 16 access registers:

Subcommand Function

7A=X'00000000' Sets the contents of access register 7 to zeros.

2A=F‘234’ Sets the contents of access register 2 to decimal
234.

5A=(X'00',X'11') Sets the contents of access registers 5 and 6 to
zero and X'11', respectively.

Displaying and Modifying Data in Alternate Address Spaces
You can display and modify the contents of storage in alternate address/data
spaces by using the AR and ALET keywords on the LIST subcommand and the
TEST assignment function. Use the AR keyword to specify the number of the
access register to be used to reference data in an alternate address/data space.
Use the ALET keyword to specify from one to eight hexadecimal characters that
indicate which address/data space is to be referenced.

The following examples show the use of the LIST subcommand to display data in
an alternate address/data space.

Subcommand Function

LIST 4AD8. AR(4) Displays the contents of the storage at address
4AD8 in the address/data space indicated by
access register 4.

LIST 2R? AR(8) Displays the contents of the storage at the location
pointed to by general register 2 in the address/data
space indicated by access register 8.

LIST 1000. ALET(A624) Displays the contents of the storage at location
1000 in the address/data space indicated by the
ALET value A624.

The following examples show how to modify the contents of storage in alternate
address/data spaces:

Subcommand Function

5558.=X'0002' AR(4) Sets two bytes of storage at address 5558 in the
address/data space indicated by access register 4,
to the value X'0002'.

9R?=F’100’ ALET(9E00) Sets four bytes of storage, located at the address
pointed to by general register 9 in the address/data
space indicated by the ALET value 9E00, to a value
of decimal 100.

Testing Programs That Use Extended Addressing

146 z/OS V1R4.0 TSO/E Programming Guide

Copying Data to and from Alternate Address Spaces
You can use the ARFROM and ALETFROM keywords on the COPY subcommand
to copy data from alternate address/data spaces to other locations. Similarly, you
can use the ARTO and ALETTO keywords to copy data to storage in alternate
address/data spaces. The ARTO and ARFROM keywords allow you to specify the
number of the access register to be used to reference data in an alternate
address/data space. Use the ALETTO and ALETFROM keywords to specify from
one to eight hexadecimal characters that indicate which address/data space is to be
referenced.

The following examples show the use of the COPY subcommand to copy data to
and from alternate address/data spaces.

Subcommand Function

COPY 13R? 1000. ARTO(5) LENGTH(72)
Copies 72 bytes starting at the location pointed to
by register 13 to location 1000 in the address/data
space indicated by access register 5.

COPY 1R? A080. ARFROM(1) ALETTO(40C3A)
Copies 4 bytes of storage at the location pointed to
by register 1 in the address/data space indicated by
access register 1 to location A080 in the
address/data space indicated by the ALET value
40C3A.

Providing Symbolic Names for Locations in Alternate Address Spaces
You can use the AR and ALET keywords on the EQUATE subcommand to establish
symbols to refer to storage locations in alternate address/data spaces. The AR
keyword allows you to specify the number of the access register to be used to
reference data in an alternate address/data space. Use the ALET keyword to
specify from one to eight hexadecimal characters that indicate which address/data
space is to be referenced.

The following examples show the use of the EQUATE subcommand to associate a
symbolic name with a location in an alternate address/data space.

Subcommand Function

EQUATE X 2290. AR(5) Symbol X refers to the address of location 2290 in
the address/data space indicated by access register
5.

EQUATE Y 1R? ALET(4AC2) Symbol Y refers to the address pointed to by
general register 1 in the address/data space
indicated by the ALET value 4AC2.

Example Programs for the TEST Tutorial
The following two programs are used in the TEST tutorial. The first program is used
early in the tutorial and must be placed in a sequential data set called
‘prefix.SAMPLE1.ASM’. The second program is used later; it must be placed in a
sequential data set called ‘prefix.SAMPLE2.ASM’.

Testing Programs That Use Extended Addressing

Chapter 17. A Tutorial Using the TEST Command 147

**
** *
** This is a sample assembler language program that is *
** used with the TEST tutorial in the publication, *
** TSO/E Programming Guide. *
** *
**
SAMP1 CSECT

STM 14,12,12(13)
BALR 12,0
USING *,12
ST 13,SAVE+4
LA 15,SAVE
ST 15,8(13)
LR 13,15

STOP1 LH 3,HALFCON
STOP2 A 3,FULLCON
STOP3 ST 3,HEXCON

L 13,4(13)
LM 14,12,12(13)
BR 14

SAVE DC 18F’0’
ADCON DC A(SAVE)
FULLCON DC F’-1’
HEXCON DC XL4’FD38’
HALFCON DC H’32’
CHARCON DC CL10’TEST EXAMP’
PACKCON DC PL4’25’
BINCON DC B’10101100’

END SAMP1

Figure 19. Source for First Sample Program

Example Programs for the TEST Tutorial

148 z/OS V1R4.0 TSO/E Programming Guide

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
1 **
2 ** *
3 ** This is a sample assembler language program that is *
4 ** used with the TEST tutorial in the publication, *
5 ** TSO/E Programming Guide. *
6 ** *
7 **

000000 8 SAMP1 CSECT
000000 90EC D00C 0000C 9 STM 14,12,12(13)
000004 05C0 10 BALR 12,0

00006 11 USING *,12
000006 50D0 C02A 00030 12 ST 13,SAVE+4
00000A 41F0 C026 0002C 13 LA 15,SAVE
00000E 50FD 0008 00008 14 ST 15,8(13)
000012 18DF 15 LR 13,15
000014 4830 C07A 00080 16 STOP1 LH 3,HALFCON
000018 5A30 C072 00078 17 STOP2 A 3,FULLCON
00001C 5030 C076 0007C 18 STOP3 ST 3,HEXCON
000020 58DD 0004 00004 19 L 13,4(13)
000024 98EC D00C 0000C 20 LM 14,12,12(13)
000028 07FE 21 BR 14
00002A 0000
00002C 0000000000000000 22 SAVE DC 18F’0’
000074 0000002C 23 ADCON DC A(SAVE)
000078 FFFFFFFF 24 FULLCON DC F’-1’
00007C 0000FD38 25 HEXCON DC XL4’FD38’
000080 0020 26 HALFCON DC H’32’
000082 E3C5E2E340C5E7C1 27 CHARCON DC CL10’TEST EXAMP’
00008C 0000025C 28 PACKCON DC PL4’25’
000090 AC 29 BINCON DC B’10101100’
000000 30 END SAMP1

ASSEMBLER DIAGNOSTICS AND STATISTICS

NO STATEMENTS FLAGGED IN THIS ASSEMBLY
HIGHEST SEVERITY WAS 0
OPTIONS FOR THIS ASSEMBLY
ALIGN, ALOGIC, BUFSIZE(STD), NODECK, NOESD, FLAG(0), LINECOUNT(55), LIST, NOMCALL, YFLAG, WORKSIZE(2097152)
NOMLOGIC, NUMBER, OBJECT, NORENT, NORLD, STMT, NOLIBMAC, TERMINAL, TEST, NOXREF(SHORT)
SYSPARM()

WORK FILE BUFFER SIZE/NUMBER =32758/ 1
TOTAL RECORDS READ FROM SYSTEM INPUT 30
TOTAL RECORDS READ FROM SYSTEM LIBRARY 0
TOTAL RECORDS PUNCHED 9
TOTAL RECORDS PRINTED 46

Figure 20. Listing for First Sample Program

Example Programs for the TEST Tutorial

Chapter 17. A Tutorial Using the TEST Command 149

**
** *
** This is a sample assembler language program that is *
** used with the TEST tutorial in the publication, *
** TSO/E Programming Guide. *
** *
** NOTE: There is an error in this program. It is intended *
** to be located and fixed in the TEST tutorial. *
**
TABAVG CSECT

STM 14,12,12(13)
BALR 12,0
USING *,12
ST 13,SAVE+4
LA 15,SAVE
ST 15,8(13)
LR 13,15
OPEN (OUTDCB,(OUTPUT))
L 7,TABSIZE
SR 6,6
SR 5,5

ADDIT AH 5,TAB(6)
LA 6,2(6)
BCT 7,ADDIT
ST 5,SUM
SR 4,4
DR 4,7
STM 4,5,AVG
PUT OUTDCB,OUTMSG
CLOSE (OUTDCB)
L 13,4(13)
LM 14,12,12(13)
BR 14

SAVE DC 18F’0’
TABSIZE DC F’12’
AVG DC 2F’0’
SUM DC F’0’
TAB DC H’31’

DC H’29’
DC H’31’
DC H’30’
DC H’31’
DC H’30’
DC H’31’
DC H’31’
DC H’30’
DC H’31’
DC H’30’
DC H’31’

OUTMSG DC CL50’TABLE AVERAGE PROGRAM ’
OUTDCB DCB DDNAME=OUTDD,LRECL=50,BLKSIZE=50,RECFM=F, *

MACRF=(PM),DSORG=PS
END TABAVG

Figure 21. Source for Second Sample Program

Example Programs for the TEST Tutorial

150 z/OS V1R4.0 TSO/E Programming Guide

EXTERNAL SYMBOL DICTIONARY
SYMBOL TYPE ID ADDR LENGTH LDID
TABAVG SD 0001 000000 000164

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
1 **
2 ** *
3 ** This is a sample assembler language program that is *
4 ** used with the TEST tutorial in the publication, *
5 ** TSO/E Programming Guide. *
6 ** *
7 ** NOTE: There is an error in this program. It is intended *
8 ** to be located and fixed in the TEST tutorial. *
9 **

000000 10 TABAVG CSECT
000000 90EC D00C 0000C 11 STM 14,12,12(13)
000004 05C0 12 BALR 12,0

00006 13 USING *,12
000006 50D0 C05E 00064 14 ST 13,SAVE+4
00000A 41F0 C05A 00060 15 LA 15,SAVE
00000E 50FD 0008 00008 16 ST 15,8(13)
000012 18DF 17 LR 13,15

18 OPEN (OUTDCB,(OUTPUT))
000014 19+ CNOP 0,4 ALIGN LIST TO FULLWORD
000014 4510 C016 0001C 20+ BAL 1,*+8 LOAD REG1 W/LIST ADDR.
000018 8F 21+ DC AL1(143) OPTION BYTE
000019 000104 22+ DC AL3(OUTDCB) DCB ADDRESS
00001C 0A13 23+ SVC 19 ISSUE OPEN SVC
00001E 5870 C0A2 000A8 24 L 7,TABSIZE
000022 1B66 25 SR 6,6
000024 1B55 26 SR 5,5
000026 4A56 C0B2 000B8 27 ADDIT AH 5,TAB(6)
00002A 4166 0002 00002 28 LA 6,2(6)
00002E 4670 C020 00026 29 BCT 7,ADDIT
000032 5050 C0AE 000B4 30 ST 5,SUM
000036 1B44 31 SR 4,4
000038 1D47 32 DR 4,7
00003A 9045 C0A6 000AC 33 STM 4,5,AVG

34 PUT OUTDCB,OUTMSG
00003E 4110 C0FE 00104 35+ LA 1,OUTDCB LOAD PARAMETER REG 1
000042 4100 C0CA 000D0 36+ LA 0,OUTMSG LOAD PARAMETER REG 0
000046 58F0 1030 00030 37+ L 15,48(0,1) LOAD PUT ROUTINE ADDR
00004A 05EF 38+ BALR 14,15 LINK TO PUT ROUTINE

39 CLOSE (OUTDCB)
00004C 40+ CNOP 0,4 ALIGN LIST TO FULLWORD
00004C 4510 C04E 00054 41+ BAL 1,*+8 LOAD REG1 W/LIST ADDR
000050 80 42+ DC AL1(128) OPTION BYTE
000051 000104 43+ DC AL3(OUTDCB) DCB ADDRESS
000054 0A14 44+ SVC 20 ISSUE CLOSE SVC
000056 58DD 0004 00004 45 L 13,4(13)
00005A 98EC D00C 0000C 46 LM 14,12,12(13)
00005E 07FE 47 BR 14
000060 0000000000000000 48 SAVE DC 18F’0’
0000A8 0000000C 49 TABSIZE DC F’12’
0000AC 0000000000000000 50 AVG DC 2F’0’
0000B4 00000000 51 SUM DC F’0’
0000B8 001F 52 TAB DC H’31’
0000BA 001D 53 DC H’29’
0000BC 001F 54 DC H’31’
0000BE 001E 55 DC H’30’

Figure 22. Listing for Second Sample Program (Part 1 of 3)

Example Programs for the TEST Tutorial

Chapter 17. A Tutorial Using the TEST Command 151

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
0000C0 001F 56 DC H’31’
0000C2 001E 57 DC H’30’
0000C4 001F 58 DC H’31’
0000C6 001F 59 DC H’31’
0000C8 001E 60 DC H’30’
0000CA 001F 61 DC H’31’
0000CC 001E 62 DC H’30’
0000CE 001F 63 DC H’31’
0000D0 E3C1C2D3C540C1E5 64 OUTMSG DC CL50’TABLE AVERAGE PROGRAM ’

65 OUTDCB DCB DDNAME=OUTDD,LRECL=50,BLKSIZE=50,RECFM=F, *
MACRF=(PM),DSORG=PS

67+* DATA CONTROL BLOCK
68+*

000102 0000
000104 69+OUTDCB DC 0F’0’ ORIGIN ON WORD BOUNDARY

71+* DIRECT ACCESS DEVICE INTERFACE

000104 0000000000000000 73+ DC BL16’0’ FDAD,DVTBL
000114 00000000 74+ DC A(0) KEYLE,DEVT,TRBAL

76+* COMMON ACCESS METHOD INTERFACE

000118 00 78+ DC AL1(0) BUFNO
000119 000001 79+ DC AL3(1) BUFCB
00011C 0000 80+ DC AL2(0) BUFL
00011E 4000 81+ DC BL2’0100000000000000’ *

+ DSORG
000120 00000001 82+ DC A(1) IOBAD

84+* FOUNDATION EXTENSION

000124 00 86+ DC BL1’00000000’ BFTEK,BFLN,HIARCHY
000125 000001 87+ DC AL3(1) EODAD
000128 80 88+ DC BL1’10000000’ *

+ RECFM
000129 000000 89+ DC AL3(0) EXLST

91+* FOUNDATION BLOCK

00012C D6E4E3C4C4404040 93+ DC CL8’OUTDD’ DDNAME
000134 02 94+ DC BL1’00000010’ OFLGS
000135 00 95+ DC BL1’00000000’ IFLG
000136 0050 96+ DC BL2’0000000001010000’ *

+ *
+ MACR

98+* BSAM-BPAM-QSAM INTERFACE

000138 00 100+ DC BL1’00000000’ *
+ RER1

000139 000001 101+ DC AL3(1) CHECK, GERR, PERR
00013C 00000001 102+ DC A(1) SYNAD

Figure 22. Listing for Second Sample Program (Part 2 of 3)

Example Programs for the TEST Tutorial

152 z/OS V1R4.0 TSO/E Programming Guide

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
000140 0000 103+ DC H’0’ CIND1, CIND2
000142 0032 104+ DC AL2(50) BLKSIZE
000144 00000000 105+ DC F’0’ WCPO, WCPL, OFFSR, OFFSW
000148 00000001 106+ DC A(1) IOBA
00014C 00 107+ DC AL1(0) NCP
00014D 000001 108+ DC AL3(1) EOBR, EOBAD

110+* QSAM INTERFACE

000150 00000001 112+ DC A(1) RECAD
000154 0000 113+ DC H’0’ QSWS
000156 0032 114+ DC AL2(50) LRECL
000158 00 115+ DC BL1’00000000’ EROPT
000159 000001 116+ DC AL3(1) CNTRL
00015C 00000000 117+ DC F’0’ PRECL
000160 00000001 118+ DC A(1) EOB
000000 119 END TABAVG

RELOCATION DICTIONARY
POS.ID REL.ID FLAGS ADDRESS
0001 0001 08 000019
0001 0001 08 000051

CROSS-REFERENCE
SYMBOL LEN VALUE DEFN REFERENCES
ADDIT 00004 00000026 00027 00029
AVG 00004 000000AC 00050 00033
OUTDCB 00004 00000104 00069 00022 00035 00043
OUTMSG 00050 000000D0 00064 00036
SAVE 00004 00000060 00048 00014 00015
SUM 00004 000000B4 00051 00030
TAB 00002 000000B8 00052 00027
TABAVG 00001 00000000 00010 00119
TABSIZE 00004 000000A8 00049 00024

ASSEMBLER DIAGNOSTICS AND STATISTICS

NO STATEMENTS FLAGGED IN THIS ASSEMBLY
HIGHEST SEVERITY WAS 0
OPTIONS FOR THIS ASSEMBLY

ALIGN, ALOGIC, BUFSIZE(STD), DECK, ESD, FLAG(0), LINECOUNT(55), LIST, NOMCALL, YFLAG, WORKSIZE(2097152)
NOMLOGIC, NONUMBER, NOOBJECT, NORENT, RLD, NOSTMT, NOLIBMAC, NOTERMINAL, TEST, XREF(SHORT)
SYSPARM()

WORK FILE BUFFER SIZE/NUMBER =32758/ 1
TOTAL RECORDS READ FROM SYSTEM INPUT 53
TOTAL RECORDS READ FROM SYSTEM LIBRARY 3118
TOTAL RECORDS PUNCHED 18
TOTAL RECORDS PRINTED 164

Figure 22. Listing for Second Sample Program (Part 3 of 3)

Chapter 17. A Tutorial Using the TEST Command 153

154 z/OS V1R4.0 TSO/E Programming Guide

Part 4. Appendixes

© Copyright IBM Corp. 1988, 2002 155

156 z/OS V1R4.0 TSO/E Programming Guide

Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1988, 2002 157

158 z/OS V1R4.0 TSO/E Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2002 159

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Notices

160 z/OS V1R4.0 TSO/E Programming Guide

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This document describes intended Programming Interfaces that allow the customer
to write programs that obtain the services of z/OS TSO/E.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v IBM
v IBMLink
v MVS
v Resource Link
v System/360
v System/370
v SAA
v Systems Application Architecture
v VTAM
v z/OS
v z/OS.e
v zSeries

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Notices 161

162 z/OS V1R4.0 TSO/E Programming Guide

Bibliography

This section lists the books in the TSO/E library and related publications.

TSO/E Publications
TSO/E Publications

v z/OS TSO/E Administration, SA22-7780

v z/OS TSO/E CLISTs, SA22-7781

v z/OS TSO/E Command Reference, SA22-7782

v z/OS TSO/E Customization, SA22-7783

v z/OS TSO/E General Information, SA22-7784

v z/OS TSO/E Guide to SRPI, SA22-7785

v z/OS TSO/E Messages, SA22-7786

v z/OS TSO/E Primer, SA22-7787

v z/OS TSO/E Programming Guide, SA22-7788

v z/OS TSO/E Programming Services, SA22-7789

v z/OS TSO/E REXX Reference, SA22-7790

v z/OS TSO/E REXX User’s Guide, SA22-7791

v z/OS TSO/E System Programming Command Reference, SA22-7793

v z/OS TSO/E System Diagnosis: Data Areas, GA22-7792

v z/OS TSO/E User’s Guide, SA22-7794

Related Publications
z/OS MVS Publications

v z/OS MVS Planning: APPC/MVS Management, SA22-7599

v z/OS MVS Programming: Writing Transaction Programs for APPC/MVS,
SA22-7621

v z/OS MVS Initialization and Tuning Reference, SA22-7592

v z/OS MVS Programming: Authorized Assembler Services Guide, SA22-7608

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN,
SA22-7609

v z/OS MVS System Messages, Vol 1 (ABA-AOM), SA22-7631

v z/OS MVS System Messages, Vol 2 (ARC-ASA), SA22-7632

v z/OS MVS System Messages, Vol 3 (ASB-BPX), SA22-7633

v z/OS MVS System Messages, Vol 4 (CBD-DMO), SA22-7634

v z/OS MVS System Messages, Vol 5 (EDG-GFS), SA22-7635

v z/OS MVS System Messages, Vol 6 (GOS-IEA), SA22-7636

v z/OS MVS System Messages, Vol 7 (IEB-IEE), SA22-7637

v z/OS MVS System Messages, Vol 8 (IEF-IGD), SA22-7638

v z/OS MVS System Messages, Vol 9 (IGF-IWM), SA22-7639

v z/OS MVS System Messages, Vol 10 (IXC-IZP), SA22-7640

v z/OS MVS System Codes, SA22-7626

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT), GA22-7581

v z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC), GA22-7582

© Copyright IBM Corp. 1988, 2002 163

v z/OS MVS Data Areas, Vol 3 (IVT-RCWK), GA22-7583

v z/OS MVS Data Areas, Vol 4 (RD-SRRA), GA22-7584

v z/OS MVS Data Areas, Vol 5 (SSAG-XTLST), GA22-7585

ISPF Publications

v z/OS ISPF Services Guide, SC34-4819

v z/OS ISPF Dialog Developer’s Guide and Reference, SC34-4821

Bibliography

164 z/OS V1R4.0 TSO/E Programming Guide

Index

Special Characters
? indirection symbol 108

31-bit addressing considerations for TEST 112
31-bit addressing considerations for

TESTAUTH 112
% indirection symbol 108

Numerics
31-bit addressing considerations for TEST 112
31-bit addressing considerations for TESTAUTH 112

A
abend

completion code 55
ESTAE/ESTAI relationship 54

absolute address 105
access register 107
access to storage by TEST and TESTAUTH

setting breakpoints
for cross-memory applications 113

accessibility 157
addressing considerations under TEST and

TESTAUTH 111
alternative library interface routine (IKJADTAB) 10
APPC/MVS

transaction programs
considerations for testing 101, 115
CPICOMM host command environment 4
description 8
LU62 host command environment 4

application invocation function (ICQAMLI0) 10
ASM command 81
assembling a program 81
assignment function of TEST 133
AT subcommand of TEST 129
ATTACH macro 50
attention exit handling routine

attention exit parameter list (AEPL) 63
command processor use of 60
full-screen protection responsibility 63
parameter received by 61
register content at entry 62
scheduling 59

attention interruption
in cross-memory mode

considerations when testing 113
parameter received 61
STAX service routine 57

attention interruption handling (STAX) 57
automatic qualification 106

B
binder listing

producing for control statements 88

breakpoint 98, 129

C
CALL command 94

example 94
loading and executing a load module 94
passing a parameter when loading and executing

load modules 95
CALL subcommand of TEST 143
CALLTSSR macro instruction 9
catalog information routine (IKJEHCIR) 10
changing the source of input

STACK service routine 38
checking syntax

of a command operand 21
of subcommand operand 50

CLIST 4
advantage of 5
file compression restrictions 6

CLIST attention facility (IKJCAF) 10, 57
COBOL command 82
command buffer 16

format of 16
input to command scan service routine

(IKJSCAN) 50
input to parse service routine (IKJPARS) 21
returned by PUTGET 49

command library
adding a new member 71
concatenating a new data set 71

command operand
checking syntax of 21
determining validity of 21
keyword operand 18
positional operand 18
subfield of a keyword operand 18

command processor
adding to private step library 71
adding to SYS1.CMDLIB 71
advantage of 5
attention exit routine 60
changing the source of input 38
command processor parameter list (CPPL) 15
communicating with the terminal user 35
completion code 55
definition of 13
determining validity of an operand 21
example 24
executing 73
full-screen processing 38
function that relies on error routine support 53
giving control to 40
installing 71
message handling 35
passing control to a subcommand processor 49
processing an abnormal termination (abend) 53
processing attention interruption 57

© Copyright IBM Corp. 1988, 2002 165

command processor (continued)
resetting input stack after an attention

interruption 61
return code 20
steps for writing 19
termination of full-screen 42
testing 73

command processor parameter list
accessing 19
mapping macro 19

command scan service routine (IKJSCAN) 9, 50
commands 65

ASM command 81
CALL command 94
COBOL command 82
FORT command 82
HELP command 66
information about (HELP) 66
LINK command 85
LOADGO command 91
PLI command 82
RUN command 82
TEST command 97
TESTAUTH command 97

communicating with the user at the terminal 35
compiling a program 81
compression

control for REXX execs 7
concatenating HELP data sets 65
control statements

producing a listing 88
controlling REXX exec compression 7
COPY subcommand of TEST 133
CP or NOCP (operand of TEST and TESTAUTH) 100
CPPL (command processor parameter list) 15
creating HELP information 65
cross-memory considerations for TEST and

TESTAUTH 113

D
DAIR (dynamic allocation interface routine) 10
DAIRFAIL routine (IKJEFF18) 10, 37
default service routine (IKJEHDEF) 10
DELETE subcommand of TEST 143
determining the validity of a command 21
diagnostic error message 55
disability 157
DROP subcommand of TEST 139
Dumps

obtaining 99

E
ECT (environment control table) 16
END subcommand of TEST 121
EQUATE subcommand of TEST 139
error message 55
ESTAE and ESTAI exit routine guidelines 54
ESTAE retry routine 55

example
full-screen command processor operation 42

EXEC statement of LOGON procedures 15
exec, REXX 3
executing a program 91

under control of TEST 100
under control of TESTAUTH 100

exiting full-screen mode 41
external function, invoking considerations 41

F
file compression

performance benefit 6
restrictions 6

floating-point register 107
format

of a HELP data set 67
of HELP members 66

FORT command 82
FREEMAIN subcommand of TEST 143
full-screen

command processor 38
example of operation 42
macro used 39
termination 42

mode 43
exiting 41
reentering 41

protection responsibility of attention exit 63
function

of INITIAL=NO 47
of INITIAL=YES

when first message is full-screen 44
when first message is non-full-screen 45, 46

of reshow in full-screen message processing 43

G
general register 106
GETMAIN subcommand of TEST 143
GETMSG. 10
GNRLFAIL/VSAMFAIL routine (IKJEFF19) 10, 37
GO subcommand of TEST 120
guidelines for ESTAE and ESTAI exit routines 54

H
HELP data set

adding members to 66
attributes of 65
concatinating 65
definition of 65
format of 67
updating 66

HELP information, creating 65
HELP subcommand of TEST 121
host command environment

CPICOMM 3
LU62 3

166 z/OS V1R4.0 TSO/E Programming Guide

I
I/O service routine 10, 36
ICQCAL00 10
ICQGCL00 10
IKJEFF02 (TSO/E message issuer service routine) 37
IKJEFF18 (DAIRFAIL routine) 37
IKJEFF19 (GNRLFAIL/VSAMFAIL routine) 37
IKJPARS (parse service routine) 21
IKJSCAN 50
indirect address 107

? (question mark) 108
% (percent sign) 108
definition and use 107
example of indirect addressing 108

information about commands (HELP) 66
informational message, issuing 36
input buffer

See command buffer

K
keyboard 157
keyword operand 18

L
level of a message 35
LINK command 85

example 85
creating a load module 86
creating a map of the load module 88
producing a cross reference table 88
producing a list of all linkage editor control

statements 88
producing a symbol table 88
producing an output listing 87
resolving an external reference 87
sending an error message to your terminal 89

operand 85
LIB 87
LOAD 86
NOLIST 88
NOMAP 88
NOPRINT 87
NOTEST 89
PRINT 87
TEST 89
XREF 88

link-editing a program 85
LIST subcommand of TEST 121, 144
LISTDCB subcommand of TEST 138
LISTDEB subcommand of TEST 139
LISTMAP subcommand of TEST 138
LISTPSW subcommand of TEST 138
LISTTCB subcommand of TEST 140
LISTVP subcommand of TEST 145
LISTVSR subcommand of TEST 144
LOAD subcommand of TEST 143
LOADGO command 91

example 91

LOADGO command (continued)
loading and executing programs with no

operands 92
passing a parameter when loading and executing

programs 92
requesting an output listing when loading and

executing programs 92
resolving an external reference when loading and

executing programs 93
specifying a name when loading and executing

programs 94
specifying an entry point when loading and

executing programs 93
operand 91

CALL 93
EP 94
MAP 93
NOMAP 93
PRINT 93
specifying data-set-list 92
TERM 93

program 92
passing a parameter 92
producing an output listing 92
resolving an external reference 93
specifying a program name 94
specifying an entry point 93

loading a program 91
logon cataloged procedure

EXEC statement 15

M
macro instruction

GETLINE 37
IKJUNFLD 23
parse 21
PUTLINE 37
STACK 38
STAX 57
TGET 37
TPG 37
TPUT 37
used to write a full-screen command processor 39

macro interface
ATTACH 55
ESTAE 55
FESTAE 55

message 35
class

definition 35
error 55
informational (issuing) 36
level 35
mode (definition) 35
mode (issuing) 36, 49
prompting (definition) 35
prompting (issuing) 36

message handling 35
DAIRFAIL routine (IKJEFF18) 37
GNRLFAIL/VSAMFAIL routine (IKJEFF19) 37

Index 167

message handling (continued)
I/O service routine 36
message level 35
TSO/E message issuer service routine

(IKJEFF02) 37
mode message

definition 35
issuing 36, 49

module name 106

N
NOCP or CP (operand of TEST and TESTAUTH) 100
NOEDIT mode 40
Notices 159

O
OFF subcommand of TEST 129

P
parameter

passed to attention handling routine 61
received by attention handling routine 61

parameter list
attention exit parameter list (AEPL) 63
command processor parameter list (CPPL) 15

parse service routine (IKJPARS) 9, 21
prompt mode HELP function 23
validity checking routine 22
verify exit routine 23

PLI command 82
positional operand 18

checking for logical error 22
printer support CLIST 10
program

assembling 81
CLIST 4

advantage of 5
command processor 5, 13

advantage of 5
compiling 81
executing 77

comparing execution commands 77
using the CALL command 94
using the LOADGO command 91
using the RUN command 82

executing under TEST 100
executing under TESTAUTH 100
link-editing 85
REXX exec 3

advantage of 5
server 9
testing authorized 97
testing unauthorized 97
type

CLIST 4
command processor 5
REXX exec 3
server 9

program object
creating 86
creating a map 88

programming services overview 9
prompt mode HELP function

definition of 23
importance of ECTNOQPR bit 23
making active for subcommands 24
restriction on 24
updating HELP members for 68

prompting message
definition 35
issuing 36

protection of screen content 41
PSCB (protected step control block) 16, 17
PUTGET service routine 36, 49

processing a second-level message 36
PUTLINE service routine 36

processing a second-level message 36

Q
qualified address 106
QUALIFY subcommand of TEST 142

R
reading information from the terminal 40
reentering full-screen mode 41
register 106

access 107
floating-point 107
general 106
vector 107
vector mask 107

relative address 105
RESHOW 41, 43
restoration of screen content 41
retrieving information about commands and

subcommands 65
return code from a command processor 20
REXX exec 3

advantage of 5
file compression restrictions 7

REXX exec compression 7
REXX language

APPC/MVS transaction programs, writing 3
RUN command 82

compiling a source code statement 83
passing a parameter when compiling 83
specifying a subroutine library when compiling 83
specifying a VSBASIC compiler option 83

S
screen content

protection 41
restoration of 41

second-level message
definition 36
requesting 36

168 z/OS V1R4.0 TSO/E Programming Guide

server 9
service provided by TSO/E 9
set full-screen mode on 39
SETVSR subcommand of TEST 145
shortcut keys 157
space management 10
STAX service routine 10

CLIST attention exit 57
deferring attention exit 59

STFSMODE 38, 40
STLINENO 38
STTMPMD 38
subcommand 49

invoking 18
recognizing 49

subcommand name
checking syntax of 50
determining validity of 50

subcommand processor 18, 49
definition of 18
passing control to 50
releasing 51
steps for writing 50

subfield of a keyword operand 18
subpool 78 50
symbol 110

external 110
internal 110
restrictions 110

symbolic address 105
syntax notation conventions 10

T
table look-up service (IKJTBLS) 10
terminal attention interruption element (TAIE) 63
TERMINAL BREAK, use of 40
terminal control macro instructions 9
terminal I/O

BSAM 37
GETLINE 37
PUTLINE 37
QSAM 37
TGET 37
TPG 37
TPUT 37

terminal monitor program (TMP)
description 15

TEST command
abend occurrences outside home address

space 113
access to storage 113
addressing considerations 111
addressing conventions 105
APPC/MVS transaction programs

examples 103
testing 98, 101, 115

BASELU or LU operand 100, 101
considerations when testing 101, 115
CP or NOCP operand 100
cross-memory considerations 113

TEST command (continued)
definition of address expression 109
description 97
examples using TEST 101
executing a program under control of 100
extended addressing 114
KEEPTP operand 100, 101
NOCP or CP operand 100
program environment after testing 115
restrictions on internal and external symbols 110
setting breakpoints 98, 129

for cross-memory applications 113
testing a command processor 73, 100
testing a program 97
TP operand 100, 101
tutorial 117
types of addresses 105
using virtual fetch services 112
valid address examples 111
vector facility 113
when to use 99

TEST subcommand
list of 103
used in tutorial

assignment function (=) 133
AT 129
CALL 143
COPY 133
DELETE 143
DROP 139
END 121
EQUATE 139
FREEMAIN 143
GETMAIN 143
GO 120
HELP 121
LIST 121, 144
LISTDCB 138
LISTDEB 139
LISTMAP 138
LISTPSW 138
LISTTCB 140
LISTVP 145
LISTVSR 144
LOAD 143
OFF 129
QUALIFY 142
SETVSR 145
WHERE 127

TESTAUTH command
abend occurrences outside home address

space 113
access to storage 113
addressing considerations 111
addressing conventions 105
APPC/MVS transaction programs

examples 103
testing 98, 101, 115

BASELU or LU operand 100, 101
considerations when testing 101, 115
CP or NOCP operand 100

Index 169

TESTAUTH command (continued)
cross-memory considerations 113
definition of address expression 109
description 97
examples using TESTAUTH 101
executing a program under control of 100
extended addressing 114
KEEPTP operand 100, 101
NOCP or CP operand 100
program environment after testing 115
restrictions on internal and external symbols 110
setting breakpoints 98

for cross-memory applications 113
testing a command processor 100
testing a program 97
TP operand 100, 101
types of addresses 105
using virtual fetch services 112
valid address examples 111
vector facility 113
when to use 99

TESTAUTH subcommand
See TEST subcommand

testing a command processor 73
TGET 38, 40
TGET ASIS 40
TMP (terminal monitor program)

description 15
TPG 40
TPUT 38, 40
TPUT FULLSCR 40
TPUT NOEDIT 40
TSO/E environment service 10
TSO/E message issuer service routine (IKJEFF02) 37
TSO/E service facility (IKJEFTSR) 10, 19

U
updating SYS1.HELP 66
UPT (user profile table)

description 16
user profile table

accessing 17
user, communicating with 35

V
validity checking routine 22
vector mask register 107
vector register 107
verify exit routine 23
virtual fetch service 112
VLF data repository

file compression 6
restrictions 6

VTAM full-screen mode 38

W
WHERE subcommand of TEST 127
writing HELP members 66

writing information to the terminal 40

170 z/OS V1R4.0 TSO/E Programming Guide

Readers’ Comments — We’d Like to Hear from You

z/OS
TSO/E
Programming Guide

Publication No. SA22-7788-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7788-01

SA22-7788-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corparation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694–A01 and 5655–G52

Printed in U.S.A.

SA22-7788-01

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How this document is organized
	How to use this document
	Where to find more information
	Accessing licensed books on the Web
	Using LookAt to Look Up Message Explanations

	Summary of changes
	Part 1. Introduction
	Chapter 1. Programming Using TSO/E
	What is a REXX Exec?
	What is a CLIST?
	What is a Command Processor?
	Considerations for Writing REXX Execs, CLISTs and Command Processors
	Storing REXX Execs in VLF Storage
	Controlling REXX Exec Compression

	What is an APPC/MVS Transaction Program?
	What is a Server?
	Overview of TSO/E Programming Services
	Syntax Notational Conventions

	Part 2. Writing a Command Processor
	Chapter 2. What is a Command Processor?
	The TSO/E Environment
	The Command Processor Parameter List (CPPL)

	Accessing the User Profile Table Without a CPPL
	Command Syntax
	What is a Subcommand Processor?

	Chapter 3. Writing a Command Processor
	Chapter 4. Validating Command Operands
	Using the Parse Service Routine
	Checking Positional Operands for Logical Errors
	Checking Unidentified Keyword Operands
	Using the Prompt Mode HELP Function

	A Sample Command Processor

	Chapter 5. Communicating with the Terminal User
	Issuing Messages
	Message Levels
	Using the I/O Service Routines to Handle Messages
	Using the TSO/E Message Issuer Routine (IKJEFF02)
	Using Generalized Routines for Issuing Messages

	Performing Terminal I/O
	Changing Your Command Processor's Source of Input
	Writing a Full-Screen Command Processor
	Set Full-Screen Mode On
	Give Control to the Command Processor
	Write to and Get Information from the Terminal
	Exiting and Reentering Full-Screen Mode
	Full-Screen Command Processor Termination
	Examples of Full-Screen Command Processor Operation

	Chapter 6. Passing Control to Subcommand Processors
	Step 1. Issuing a Mode Message and Retrieving an Input Line
	Step 2. Validating the Subcommand Name
	Step 3. Passing Control to the Subcommand Processor
	Writing a Subcommand Processor

	Step 4. Releasing the Subcommand Processor

	Chapter 7. Processing Abnormal Terminations
	Error Handling Routines
	ESTAE and ESTAI Exit Routines

	When are Error Handling Routines Needed?
	Guidelines for Writing ESTAE and ESTAI Exit Routines
	Linkage Considerations

	Chapter 8. Processing Attention Interruptions
	Responding to Attention Interruptions
	How Attention Interruptions are Processed
	Deferring Attention Exits
	System Use of STAX DEFER=YES

	Writing Attention Handling Routines
	Parameters Received by Attention Handling Routines
	Full-Screen Protection Responsibilities of Attention Exit Routines

	Chapter 9. Creating HELP Information
	Writing HELP Members
	Format of HELP Members
	The Prompt Mode HELP Function

	An Example of a HELP Member

	Chapter 10. Installing a Command Processor
	Using a Private Step Library
	Placing Your Command Processor in SYS1.CMDLIB
	Creating Your Own Command Library

	Chapter 11. Executing and Testing a Command Processor
	Executing a Command Processor
	Testing an Unauthorized Command Processor
	Testing a Command Processor That is Terminating Abnormally
	Testing a Command Processor Not Currently Executing

	Testing an Authorized Command Processor

	Part 3. Preparing, Executing and Testing a Program
	Chapter 12. Overview of Preparing, Executing and Testing a Program
	Chapter 13. Compiling and Assembling Programs
	ASM Command
	COBOL Command
	FORT Command
	PLI Command
	RUN Command
	Compiling Source Code Statements
	Passing Parameters When Compiling
	Specifying a Subroutine Library When Compiling - the LIB Operand
	Specifying VSBASIC Compiler Options

	Chapter 14. Binding or Link-Editing a Program
	LINK Command
	Creating a Program Object or Load Module
	Resolving External References - the LIB Operand
	Producing Output Listings - the PRINT Operand
	Creating a Map of the Program Object or Load Module - the MAP Operand
	Producing a List of All Binder or Linkage Editor Control Statements - the LIST Operand
	Producing a Cross Reference Table - the XREF Operand
	Producing a Symbol Table - the TEST Operand
	Sending Error Messages to Your Terminal - the TERM/NOTERM Operand

	Chapter 15. Loading and Executing a Program
	LOADGO Command
	Loading and Executing Programs with No Operands
	Passing Parameters when Loading and Executing Programs
	Requesting Output Listings when Loading and Executing Programs - the PRINT/NOPRINT and TERM/NOTERM Operands
	Resolving External References when Loading and Executing Programs - the CALL/NOCALL and LIB Operands
	Specifying an Entry Point when Loading and Executing Programs - the EP Operand
	Specifying Names when Loading and Executing Programs - the NAME Operand

	CALL Command
	Loading and Executing Load Modules
	Passing Parameters when Loading and Executing Load Modules

	Chapter 16. Testing a Program
	The TEST and TESTAUTH Commands
	The TEST Command
	The TESTAUTH Command
	Using TEST or TESTAUTH

	When to Use the TEST and TESTAUTH Commands
	Testing a Currently Executing Program
	Testing a Program Not Currently Executing
	Testing an APPC/MVS Transaction Program

	Examples of Issuing the TEST and TESTAUTH Commands
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10

	TEST and TESTAUTH Subcommands
	Addressing Conventions Associated with TEST and TESTAUTH
	Absolute Address
	Relative Address
	Symbolic Address
	[Module-Name].Entry-Name
	Qualified Addresses
	General Registers
	Floating-Point Registers
	Vector Registers
	Vector Mask Register
	Access Registers
	Indirect Address
	Address Expression

	Restrictions on the Use of Symbols
	External Symbols
	Internal Symbols
	Addressing Considerations
	Examples of Valid Addresses in TEST and TESTAUTH Subcommands

	Programming Considerations for Using TEST and TESTAUTH
	Considerations for 31-Bit Addressing
	Considerations for Using the Virtual Fetch Services
	Considerations for a Cross-Memory Environment
	Considerations for the Vector Facility
	Considerations for Extended Addressing
	Considerations for Testing Inbound APPC/MVS Transaction Programs
	Considerations for a Tested Program's Environment

	Chapter 17. A Tutorial Using the TEST Command
	How to Use This Tutorial
	Preparing to Use TEST
	Viewing a Program in Storage
	Monitoring and Controlling Program Execution
	Altering Storage and Registers
	Using Additional Features of TEST
	More TEST Subcommands
	GETMAIN and FREEMAIN
	LOAD and DELETE
	CALL

	Testing Programs That Use the Vector Facility
	Testing Programs That Use Extended Addressing
	Displaying and Modifying Access Registers
	Displaying and Modifying Data in Alternate Address Spaces
	Copying Data to and from Alternate Address Spaces
	Providing Symbolic Names for Locations in Alternate Address Spaces

	Example Programs for the TEST Tutorial

	Part 4. Appendixes
	Appendix. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	TSO/E Publications
	Related Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

